分析 由条件利用三角恒等变换化简函数的解析式,求出函数f(x)的零点,再利用两角和的正弦公式求得sin(α+β)的值.
解答 解:函数f(x)=2sin2x-cos2$\frac{x}{2}$=2(1-cos2x)-$\frac{1+cosx}{2}$=-(2cos2x+$\frac{1}{2}$cosx)+$\frac{3}{2}$
=-2(cos2x+$\frac{1}{4}$cosx)+$\frac{3}{2}$=-2•${(cosx+\frac{1}{8})}^{2}$+$\frac{49}{32}$,
令f(x)=0,求得cosx=$\frac{3}{4}$,或cosx=-1,
∴函数的零点为x=arccos$\frac{3}{4}$,x=π,可以认为 α=arccos$\frac{3}{4}$,β=π,
∴cosα=$\frac{3}{4}$,cosβ=-1,sinα=$\frac{\sqrt{7}}{4}$,sinβ=0.
sin(α+β)=sinαcosβ+cosαsinβ=$\frac{\sqrt{7}}{4}$•(-1)+$\frac{3}{4}$•0=-$\frac{\sqrt{7}}{4}$,
故答案为:-$\frac{\sqrt{7}}{4}$.
点评 本题主要考查三角恒等变换,求函数的零点,两角和的正弦公式,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 周期为π的奇函数 | B. | 周期为π的偶函数 | ||
| C. | 周期为$\frac{π}{2}$的奇函数 | D. | 周期为$\frac{π}{2}$的偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{\frac{1-a}{2}}$ | B. | $\sqrt{\frac{1+a}{2}}$ | C. | 2a2-1 | D. | 1-2a2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ④①③ | B. | ④②③ | C. | ①②④ | D. | ④②① |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com