精英家教网 > 高中数学 > 题目详情
13.定义区间[m,n]的长度为n-m(n>m),已知函数f(x)=$\frac{({a}^{2}-2a)x-2}{{a}^{2}x}$(a∈R,a≠0)存在区间[m,n],当x∈[m,n]时,函数值域也为[m,n],则当区间[m,n]的长度最大时,a的值为(  )
A.-3B.-2C.$\frac{2\sqrt{3}}{3}$D.3

分析 根据分式函数的性质,判断函数为增函数,根据函数定义域与值域都是[m,n],得到$\left\{\begin{array}{l}{f(m)=m}\\{f(n)=n}\end{array}\right.$,转化为f(x)=x,有两个同号的相异实数根,利用一元二次方程根与系数之间的关系进行求解.

解答 解:设[m,n]是已知函数定义域的子集.
x≠0,[m,n]⊆(-∞,0)或[m,n]⊆(0,+∞),
故函数f(x)=$\frac{a-2}{a}$-$\frac{2}{{a}^{2}x}$在[m,n]上单调递增,则$\left\{\begin{array}{l}{f(m)=m}\\{f(n)=n}\end{array}\right.$,
故m,n是方程f(x)=$\frac{a-2}{a}$-$\frac{2}{{a}^{2}x}$=x的同号的相异实数根,
即a2x2-(a2-2a)x+2=0的同号的相异实数根
∵mn=$\frac{2}{{a}^{2}}$,m+n=$\frac{a-2}{a}$,
∴m,n同号,只需△=(a2-2a)2-8a2=a2•[(a-2)2-8]>0,
即(a-2)2-8>0
∴a>2$\sqrt{2}$+2或a<-2$\sqrt{2}$+2,
n-m=$\sqrt{(m+n)^{2}-4mn}$=$\sqrt{(\frac{a-2}{a})^{2}-\frac{8}{{a}^{2}}}$=$\sqrt{-\frac{4}{{a}^{2}}-\frac{4}{a}+1}$=$\sqrt{-4(\frac{1}{a}+\frac{1}{2})^{2}}$$\sqrt{-4(\frac{1}{a}+\frac{1}{2})^{2}+2}$,
∴当$\frac{1}{a}$=-$\frac{1}{2}$,即a=-2时,n-m取得最大值$\sqrt{2}$,
故选:B

点评 本题考查了函数与方程的应用,根据函数定义域和值域的关系,判断函数的单调性,转化为一元二次方程是解决本题的关键.综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知直线l:$y=\sqrt{3}x-2\sqrt{3}$过椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的右焦点F2,且椭圆C的中心关于直线l的对称点在直线$x=\frac{a^2}{c}$(其中2c为焦距)上,直线m过椭圆左焦点F1交椭圆C于M、N两点.
(1)求椭圆C的方程;
(2)若$|{\overrightarrow{{F_2}M}+\overrightarrow{{F_2}N}}|=5\sqrt{2}$,求直线m的方程;
(3)设$\overrightarrow{OM}•\overrightarrow{ON}=\frac{2λ}{tan∠MON}≠0$(O为坐标原点),当直线m绕点F1转动时,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右顶点的坐标分别为A(-2,0),B(2,0),离心率$e=\frac{{\sqrt{3}}}{2}$
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的两焦点分别为F1、F2,点P是椭圆C的上顶点,求△PF1F2内切圆方程;
(Ⅲ)若直线l:y=k(x-1)(k≠0)与椭圆交于M、N两点,求证:直线AM与直线BN的交点在直线x=4上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和为Sn,a1=1,an+1=(λ+1)Sn+1(n∈N*,λ≠-2),且3a1,4a2,a3+13成等差数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=(2n+1)log4a2n,求数列$\{\frac{1}{b_n}\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数1、a、b成等差数列,而1、b、a成等比数列,若a≠b,则a的值为(  )
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,已知三圆C1:x2+y2=4,C2:(x+$\sqrt{3}$)2+(y-1)2=4,C3:$\left\{\begin{array}{l}{x=\sqrt{3}+2cosθ}\\{y=1+2sinθ}\end{array}\right.$(θ为参数)有一公共点P(0,2).
(Ⅰ)分别求C1与C2,C1与C3异于点P的公共点M、N的直角坐标;
(Ⅱ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求经过三点O、M、N的圆C的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知下面四个命题
①从匀速传递的产品生产流水线上,质检员每15分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②两个随机变量相关性越强,则相关系数的绝对值越接近于1;
③在回归直线方程$\widehat{y}$=0.4x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.4个单位;
④对分类变量X与Y的随机变量K2的观侧值k来说,k越小,“X与Y有关系”的把握程度越大.
其中所有真命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知各项均为正数的数列{an}满足an+1=$\frac{1}{2}$an+$\frac{1}{4}$,a1=$\frac{7}{2}$,Sn为数列{an}的前n项和,若对于任意的n∈N*,不等式$\frac{12k}{12+n-2{S}_{n}}$≥2n-3恒成立,则实数k的取值范围为$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow{a}$+$\overrightarrow{b}$=(3,-1),$\overrightarrow{a}$-$\overrightarrow{b}$=(-1,-3),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{2}$.

查看答案和解析>>

同步练习册答案