精英家教网 > 高中数学 > 题目详情
20.春节期间,某微信群主发60个随机红包(即每个人抢到的红包中的钱数是随机的,且每人只能抢一个),红包被一抢而空,后据统计,60个红包中钱数(单位:元)分配如下频率分布直方图所示(其分组区间为[0,1),[1,2),[2,3),[3,4),[4,5)).
(1)试估计该群中某成员抢到钱数不小于3元的概率;
(2)若该群中成员甲、乙两人都抢到4.5元红包,现系统将从抢到4元及以上红包的人中随机抽取2人给群中每个人拜年,求甲、乙两人至少有一人被选中的概率.

分析 (1)根据频率分布直方图,求出不小于3的频率是多少即可;
(2)利用列举法计算基本事件数以及对应的概率是多少.

解答 解:(1)根据频率分布直方图,得;
该群中抢到红包的钱数不小于3元的频率是
1-0.05-0.20-0.40=0.35,
∴估计该群中某成员抢到钱数不小于3元的概率是0.35;
(2)该群中抢到钱数不小于4元的频率为0.10,对应的人数是60×0.10=6,
记为1、2、3、4、甲、乙;
现从这6人中随机抽取2人,基本事件数是12,13,14,1甲,1乙,
23,24,2甲,2乙,34,3甲,3乙,4甲,4乙,甲乙共15种;
其中甲乙两人至少有一人被选中的基本事件为
1甲,1乙,2甲,2乙,3甲,3乙,4甲,4乙,甲乙共9种;
∴对应的概率为P=$\frac{9}{15}$=$\frac{3}{5}$.

点评 本题考查了频率分布直方图的应用问题,也考查了用列举法求古典概型的概率问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知椭圆的焦点在x轴上,短轴长为2,离心率为$\frac{\sqrt{3}}{2}$,直线l:y=-2,任取椭圆上一点P(异于短轴端点M,N)直线MP,NP分别交直线l于点T,S,则|ST|的最小值是(  )
A.2$\sqrt{3}$B.4$\sqrt{2}$C.4$\sqrt{3}$D.8$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知x>0,求证:7-x-$\frac{9}{x}$≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={x|$\frac{2x+1}{x+2}$<1,x∈R},函数f(x)=|mx+1|(m∈R),函数g(x)=x2+ax+b(a,b∈R)的值域为[0,+∞).
(1)若不等式f(x)≤3的解集为A,求m的值;
(2)在(1)的条件下,若|f(x)-2f($\frac{x}{2}$)|≤k恒成立,求k的取值范围;
(3)若关于x的不等式g(x)<c的解集为(m,m+6),求实数c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,△ABC是直角三角形,∠ACB=90°,以AC为直径的圆O交AB于F,点D是BC的中点,连接OD交圆O于点E.
(1)求证:O,C,D,F四点共圆;
(2)求证:2DF2=DE•AB+DE•AC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某市为了节约能源,拟出台“阶梯电价”制度,即制定住户月用电量的临界值a,若某住户某月用电量不超过a度,则按平价计费;若某月用电量超过a度,则超出部分按议价计费.未超出分布按平价计费.为确定a的值,随机调查了该市100户的月用电量,工作人员已将90户的用电量填在了下面的频率分布表中,最后10户的月用电量(单位:度)为:18  63  43  119  65  77  29  97  52  100
组别月用电量频数统计频数频率
1[0,20)
2[20,40)正正一
3[40,60)正正正正
4[60,80)正正正正正
5[80,100)正正正正
6[100,120)
(Ⅰ)完成频率分布表并绘制频率分布直方图;
(Ⅱ)根据已有信息,试估计全市住户的平均用电量(同一组数据用该区间的中点值作代表);
(Ⅲ)若该市计划让全市75%的住户在“阶梯电价”出台前后缴纳的电费不变,试求临界值a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ=60°,求(2$\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某几何体的三视图如图所示,图中3个三角表均为直角三角形,则该几何体的体积的最大值$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知虚数z1,z2满足z12=z2
(1)若z1,z2为某实系数一元二次方程的两根,求z1,z2
(2)若z1=1+bi,|z1|$≤\sqrt{2}$,ω=z2+3,求|ω|的取值范围.

查看答案和解析>>

同步练习册答案