精英家教网 > 高中数学 > 题目详情
15.如图,△ABC是直角三角形,∠ACB=90°,以AC为直径的圆O交AB于F,点D是BC的中点,连接OD交圆O于点E.
(1)求证:O,C,D,F四点共圆;
(2)求证:2DF2=DE•AB+DE•AC.

分析 (1)连接CF,OF,由直径所对的圆周角为直角,得到CF⊥AB,从而△ODE≌△ODB,得∠OED=∠OBD=90°,利用圆内接四边形形的判定定理得到O,C,D,F四点共圆;
(2)利用FD是圆的切线,可得DF2=DE•(DE+2r)=DE•(DO+2r)=DE•DO+DE•r,化简即可得到等式2DF2=DE•AB+DE•AC.

解答 证明:(Ⅰ)连接CF,OF,
因为AC为直径,所以CF⊥AB,
因为O,D分别为AC,BC的中点,所以OD∥AB,
所以CF⊥OD.
因为OF=OC,则∠EOF=∠EOC,且OD=OD,
所以△OCD≌△OFD.
所以∠OCD=∠OFD=90°.
所以O,C,D,F四点共圆.…(5分)
(Ⅱ)设圆的半径为r,因为OF⊥FD,所以FD是圆的切线,
所以DF2=DE•(DE+2r)=DE•(DO+2r)=DE•DO+DE•r
=DE$•\frac{1}{2}$AB+DE•$\frac{1}{2}AC$.
故2DF2=DE•AB+DE•AC.…(10分)

点评 本题着重考查了圆的切线的性质定理与判定、直径所对的圆周角、全等三角形的判定与性质等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,棱长为1的正方体ABCD-A1B1C1D1
(1)求证:AC⊥平面B1D1DB;
(2)求三棱锥B-ACB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-m|.
(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数m的值
(2)若实数a,b,c满足:a2+b2+c2=m,求a+2b+2c的最大值.(m为(1)中的m)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.以两点A(-3,-1)和B(5,5)为直径端点的圆的方程是(  )
A.(x-1)2+(y-2)2=25B.(x+1)2+(y+2)2=25C.(x+1)2+(y+2)2=100D.(x-1)2+(y-2)2=100

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线y=kx与椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)交于A、B两点,F为椭圆C的左焦点,且$\overrightarrow{AF}$•$\overrightarrow{BF}$=0,若∠ABF∈(0,$\frac{π}{12}$],则椭圆C的离心率的取值范围是(  )
A.(0,$\frac{\sqrt{2}}{2}$]B.(0,$\frac{\sqrt{6}}{3}$]C.[$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{6}}{3}$]D.[$\frac{\sqrt{6}}{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.春节期间,某微信群主发60个随机红包(即每个人抢到的红包中的钱数是随机的,且每人只能抢一个),红包被一抢而空,后据统计,60个红包中钱数(单位:元)分配如下频率分布直方图所示(其分组区间为[0,1),[1,2),[2,3),[3,4),[4,5)).
(1)试估计该群中某成员抢到钱数不小于3元的概率;
(2)若该群中成员甲、乙两人都抢到4.5元红包,现系统将从抢到4元及以上红包的人中随机抽取2人给群中每个人拜年,求甲、乙两人至少有一人被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在△ABC中,CD是∠ACB的角平分线,△ADC的外接圆交BC于点E,AB=2AC=6,EC=6,则AD的长为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在矩形ABCD中,AB=$\sqrt{2}$,BC=2,点E为BC的中点,点F在边CD上,若$\overrightarrow{AB}$•$\overrightarrow{AF}$=$\sqrt{2}$,求$\overrightarrow{AE}$•$\overrightarrow{AF}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B.证明:平面AB1C⊥平面A1BC1

查看答案和解析>>

同步练习册答案