精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=|x-m|.
(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数m的值
(2)若实数a,b,c满足:a2+b2+c2=m,求a+2b+2c的最大值.(m为(1)中的m)

分析 (1)由f(x)≤3,解得m-3≤x≤m+3,利用不等式f(x)≤3的解集为{x|-1≤x≤5},可得$\left\{\begin{array}{l}{m-3=-1}\\{m+3=5}\end{array}\right.$,解得m即可.
(2)由(1)可得:a2+b2+c2=2,利用“柯西不等式”即可得出.

解答 解:(1)由f(x)≤3,可得|x-m|≤3,解得m-3≤x≤m+3,
∵不等式f(x)≤3的解集为{x|-1≤x≤5},
∴$\left\{\begin{array}{l}{m-3=-1}\\{m+3=5}\end{array}\right.$,解得m=2.
(2)由(1)可得:m=2.∴a2+b2+c2=2,
∴a+2b+2c≤$\sqrt{{a}^{2}+{b}^{2}+{c}^{2}}$$\sqrt{{1}^{2}+{2}^{2}+{2}^{2}}$=$3\sqrt{2}$,当且仅当$\frac{a}{1}=\frac{b}{2}=\frac{c}{2}$,a2+b2+c2=2,即b=c=2a=$\frac{2\sqrt{3}}{3}$时取等号.
∴a+2b+2c的最大值为3$\sqrt{2}$.

点评 本题考查了含绝对值不等式的解法、“柯西不等式”的性质,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.若△ABC的内角A、B、C所对的边分别为a,b,c.
(1)若cos2A=sin2B+cos2C+sinAsinB,求角C的大小;
(2)若a,b,c成等差数列,求角B的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.用长为18m的钢条围成一个长方体的框架,已知长方体的长与宽之比为2:1.
(1)记长方体的宽为xm,请写出长方体的高h关于x的表达式;
(2)当该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为e=$\frac{{\sqrt{2}}}{2}$,过焦点且垂直于长轴的弦长为$\sqrt{2}$.
(Ⅰ)求椭圆C的方程:
(Ⅱ)斜率为k的真线l经过椭圆C的右焦点F且与椭圆交于不同的两点A,B设$\overrightarrow{FA}=λ\overrightarrow{FB}$λ∈(-2,-1),求直线l斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD中,底面ABCD为矩形,平面PCD⊥平面ABCD,且PD=PC=BC=3,CD=3$\sqrt{2}$,E为PB中点.
(Ⅰ)求三棱锥P-BCD的体积;
(Ⅱ)求证:CE⊥平面PBD;
(Ⅲ)设M是线段CD上一点,且满足DM=2MC,试在线段PB上确定一点N,使得MN∥平面PAD,并求出BN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知x>0,求证:7-x-$\frac{9}{x}$≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达3.32亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表,已知网购金额在2000元以上(不含2000元)的频率为0.4.试确定x,y,p,q的值,并补全频率分布直方图.
网购金额
(单位:元)
频数频率
(0,500]50.05
(500,1000]xp
(1000,1500]150.15
(1500,2000]250.25
(2000,2500]300.30
(2500,3000]yq
合计1001.00

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,△ABC是直角三角形,∠ACB=90°,以AC为直径的圆O交AB于F,点D是BC的中点,连接OD交圆O于点E.
(1)求证:O,C,D,F四点共圆;
(2)求证:2DF2=DE•AB+DE•AC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在等差数列{an}中,Sn为数列{an}的前n项和,满足a5=-1,S5=-12
(1)求数列{an}的通项公式;
(2)求前n项和为Sn,并指出当n为何值时,Sn取最小值;
(3)若Tn=|a1|+|a2|+…+|an|,求Tn

查看答案和解析>>

同步练习册答案