精英家教网 > 高中数学 > 题目详情
18.2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达3.32亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表,已知网购金额在2000元以上(不含2000元)的频率为0.4.试确定x,y,p,q的值,并补全频率分布直方图.
网购金额
(单位:元)
频数频率
(0,500]50.05
(500,1000]xp
(1000,1500]150.15
(1500,2000]250.25
(2000,2500]300.30
(2500,3000]yq
合计1001.00

分析 求出网购金额在2000元以上的人数,可得x,y的值,由此能求出x,y,p,q的值,并补全频率分布直方图.

解答 解:∵网购金额在2000元以上的频率为0.4,
∴网购金额在2000元以上的人数为100×0.4=40,
∴30+y=40,∴y=10,x=15,
∴p=$\frac{15}{100}$=0.15,q=$\frac{10}{100}$=0.1,
频率分布直方图如右图:

点评 本题考查频率分布直方图,弄清其含义是解决本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若a满足x+lgx=4,b满足x+10x=4,则a+b的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2+(x-1)|x-a|,若函数f(x)在[2,3]最小值为6,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-m|.
(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数m的值
(2)若实数a,b,c满足:a2+b2+c2=m,求a+2b+2c的最大值.(m为(1)中的m)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.平行四边形ABCD中,AB=4,AD=3,BD=$\sqrt{14}$,E,F分别为AD,CD中点,BE.BF分别交AC于R,T,则|$\overrightarrow{AR}$|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.以两点A(-3,-1)和B(5,5)为直径端点的圆的方程是(  )
A.(x-1)2+(y-2)2=25B.(x+1)2+(y+2)2=25C.(x+1)2+(y+2)2=100D.(x-1)2+(y-2)2=100

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线y=kx与椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)交于A、B两点,F为椭圆C的左焦点,且$\overrightarrow{AF}$•$\overrightarrow{BF}$=0,若∠ABF∈(0,$\frac{π}{12}$],则椭圆C的离心率的取值范围是(  )
A.(0,$\frac{\sqrt{2}}{2}$]B.(0,$\frac{\sqrt{6}}{3}$]C.[$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{6}}{3}$]D.[$\frac{\sqrt{6}}{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在△ABC中,CD是∠ACB的角平分线,△ADC的外接圆交BC于点E,AB=2AC=6,EC=6,则AD的长为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若sinx=-$\frac{1}{3}$,x∈[0,2π],求x的值.

查看答案和解析>>

同步练习册答案