| A. | (0,$\frac{\sqrt{2}}{2}$] | B. | (0,$\frac{\sqrt{6}}{3}$] | C. | [$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{6}}{3}$] | D. | [$\frac{\sqrt{6}}{3}$,1) |
分析 设F2是椭圆的右焦点.由$\overrightarrow{AF}$•$\overrightarrow{BF}$=0,可得BF⊥AF,再由O点为AB的中点,OF=OF2.可得四边形AFBF2是矩形.设∠ABF=θ,可得BF=2ccosθ,BF2=AF=2csinθ,利用椭圆的定义可得BF+BF2=2a,可得e=$\frac{1}{cosθ+sinθ}$,即可得出.
解答 解:设F2是椭圆的右焦点.
∵$\overrightarrow{AF}$•$\overrightarrow{BF}$=0,
∴BF⊥AF,
∵O点为AB的中点,OF=OF2.
∴四边形AFBF2是平行四边形,
∴四边形AFBF2是矩形.
如图所示,![]()
设∠ABF=θ,
∵BF=2ccosθ,BF2=AF=2csinθ,
BF+BF2=2a,
∴2ccosθ+2csinθ=2a,
∴e=$\frac{1}{cosθ+sinθ}$,
sinθ+cosθ=$\sqrt{2}sin(θ+\frac{π}{4})$,
∵θ∈(0,$\frac{π}{12}$],
∴$(θ+\frac{π}{4})$∈$(\frac{π}{4},\frac{π}{3}]$,
∴$sin(θ+\frac{π}{4})$∈$(\frac{\sqrt{2}}{2},\frac{\sqrt{3}}{2}]$.
∴$\sqrt{2}sin(θ+\frac{π}{4})$∈$(1,\frac{\sqrt{6}}{2}]$,
∴e∈$[\frac{\sqrt{6}}{3},1)$.
故选:D.
点评 本题考查了椭圆的定义及其标准方程性质、矩形的定义、三角函数的单调性、两角和差的正弦,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 网购金额 (单位:元) | 频数 | 频率 |
| (0,500] | 5 | 0.05 |
| (500,1000] | x | p |
| (1000,1500] | 15 | 0.15 |
| (1500,2000] | 25 | 0.25 |
| (2000,2500] | 30 | 0.30 |
| (2500,3000] | y | q |
| 合计 | 100 | 1.00 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com