精英家教网 > 高中数学 > 题目详情
5.对椭圆有结论一:椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点为F(c,0),过点P($\frac{a^2}{c}$,0)的直线l交椭圆于M,N两点,点M关于x轴的对称点为M′,则直线M′N过点F.类比该结论,对双曲线有结论二,根据结论二知道:双曲线C′:$\frac{x^2}{3}$-y2=1的右焦点为F,过点P($\frac{3}{2}$,0)的直线与双曲线C′右支有两交点M,N,若点N的坐标是(3,$\sqrt{2}$),则在直线NF与双曲线的另一个交点坐标是$(\frac{9}{5},-\frac{{\sqrt{2}}}{5})$.

分析 由已知结论一类比得到结论二,然后求出过点P、N的直线方程,再和双曲线方程联立求得M的坐标,找关于x轴的对称点得答案.

解答 解:由结论一类比得到结论二为:双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$的右焦点为F(c,0),过点P($\frac{a^2}{c}$,0)的直线l交双曲线于M,N两点,点M关于x轴的对称点为M′,则直线M′N过点F.
由双曲线C′:$\frac{x^2}{3}$-y2=1,
得a2=3,b2=1,∴c2=a2+b2=4,c=2.
∴右准线与x轴交点P($\frac{3}{2}$,0),
则过N(3,$\sqrt{2}$)、P的直线方程为$\frac{y}{\sqrt{2}}=\frac{x-\frac{3}{2}}{3-\frac{3}{2}}$,即$y=\frac{2\sqrt{2}}{3}x-\sqrt{2}$.
联立$\left\{\begin{array}{l}{y=\frac{2\sqrt{2}}{3}x-\sqrt{2}}\\{\frac{{x}^{2}}{3}-{y}^{2}=1}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{x}_{1}=3}\\{{y}_{1}=\sqrt{2}}\end{array}\right.$或$\left\{\begin{array}{l}{{x}_{2}=\frac{9}{5}}\\{{y}_{2}=\frac{\sqrt{2}}{5}}\end{array}\right.$.
∴M($\frac{9}{5},\frac{\sqrt{2}}{5}$),M关于x轴的对称点为$(\frac{9}{5},-\frac{{\sqrt{2}}}{5})$.
故答案为:$(\frac{9}{5},-\frac{{\sqrt{2}}}{5})$.

点评 本题考查了类比推理,考查了双曲线的简单几何性质,考查了计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.解不等式组$\left\{\begin{array}{l}{{x}^{2}+2|x|-3<0}\\{|{x}^{2}-x|≤2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,三棱柱ABC-A1B1C1中,侧棱A1A⊥底面ABC,AC=BC,D、E、F分别为棱AB,BC,A1C1的中点.
(1)证明:EF∥平面A1CD;
(2)证明:平面A1CD⊥平面ABB1A1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.平行四边形ABCD中,AB=4,AD=3,BD=$\sqrt{14}$,E,F分别为AD,CD中点,BE.BF分别交AC于R,T,则|$\overrightarrow{AR}$|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为了解某种干电池的寿命,电池厂随机抽取了50节进行测试,下面列出了每一节电池的使用寿命(单位:h):
11 14 25 13 11 20 15 30 9 16 13 10 14 11 10 16 19 12 0 20 16 10 15 14  22 19 10 33 3 12 16 19 23 15 20 11 17 14 23 15 12 15 12 10 13 11 9 8 13 17.   
(1)画出相应的频率分布直方图和频率折线图;
(2)以上电池使用的平均数,众数,中位数分别是多少;
(3)由此,你能估计这种干电池的使用寿命吗?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线y=kx与椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)交于A、B两点,F为椭圆C的左焦点,且$\overrightarrow{AF}$•$\overrightarrow{BF}$=0,若∠ABF∈(0,$\frac{π}{12}$],则椭圆C的离心率的取值范围是(  )
A.(0,$\frac{\sqrt{2}}{2}$]B.(0,$\frac{\sqrt{6}}{3}$]C.[$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{6}}{3}$]D.[$\frac{\sqrt{6}}{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若一个函数存在定义域和值域相同的区间,则称这个函数为这个区间上的一个“保城函数”,给出下列四个函数:
①f(x)=-x3
②f(x)=3x
③f(x)=sin$\frac{πx}{3}$;
④f(x)=2ln3x-3.
其中可以找到一个区间使其成为保城函数的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.计算:${∫}_{-2010}^{2010}$(sin2011x+x2011)dx=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在等比数列{an}中,a1=$\frac{1}{2}$,a4=4,则$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…$\frac{1}{{a}_{n}}$=$4-\frac{4}{{2}^{n}}$.

查看答案和解析>>

同步练习册答案