精英家教网 > 高中数学 > 题目详情
17.若一个函数存在定义域和值域相同的区间,则称这个函数为这个区间上的一个“保城函数”,给出下列四个函数:
①f(x)=-x3
②f(x)=3x
③f(x)=sin$\frac{πx}{3}$;
④f(x)=2ln3x-3.
其中可以找到一个区间使其成为保城函数的有(  )
A.1个B.2个C.3个D.4个

分析 根据“等值区间”的定义,要想说明函数存在“等值区间”,只要举出一个符合定义的区间M即可,但要说明函数没有“等值区间”,可以用反证明法来说明.由此对四个函数逐一进行判断,即可得到答案.

解答 解:①对于函数f(x)=-x3存在“等值区间”,如 x∈[-1,1]时,f(x)=-x3∈[-1,1].
②对于函数f(x)=3x,若存在“等值区间”[a,b],由于函数是定义域内的增函数,故有3a=a,3b=b,
即方程3x=x有两个解,即y=3x和y=x的图象有两个交点,这与y=3x和y=x的图象没有公共点相矛盾,故不存在
“等值区间”.
③对于函数f(x)=sin$\frac{πx}{3}$,存在“等值区间”,如 x∈[0,$\frac{1}{2}$]时,f(x)=sin$\frac{πx}{3}$∈[0,$\frac{1}{2}$];
④对于f(x)=2ln3x-3,由于函数是定义域内的增函数,故有2ln3x-3=x有两个解,不成立,所以不存在
“等值区间”.
故选:B.

点评 本题考查的知识点是函数的概念及其构造要求,考查了函数的值域,在说明一个函数没有“等值区间”时,利用函数的性质、图象结合反证法证明是解答本题的关键,属于创新题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=1,
则四面体A-EFB的体积V=$\frac{{\sqrt{2}}}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,正方形ABCD的边长为1,正方形ADEF所在平面与平面ABCD互相垂直,G,H是DF,FC的中点.
(1)求证:GH∥平面CDE;
(2)求证:BC⊥平面CDE;
(3)求三棱锥A-BCG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.对椭圆有结论一:椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点为F(c,0),过点P($\frac{a^2}{c}$,0)的直线l交椭圆于M,N两点,点M关于x轴的对称点为M′,则直线M′N过点F.类比该结论,对双曲线有结论二,根据结论二知道:双曲线C′:$\frac{x^2}{3}$-y2=1的右焦点为F,过点P($\frac{3}{2}$,0)的直线与双曲线C′右支有两交点M,N,若点N的坐标是(3,$\sqrt{2}$),则在直线NF与双曲线的另一个交点坐标是$(\frac{9}{5},-\frac{{\sqrt{2}}}{5})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点分别是F1,F2,且F2的坐标为(1,0),离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)设A是椭圆C的左顶点,直线l的方程为x=4,过F2的直线l′与椭圆C相交于异于点A的P,Q两点.
①求$\overrightarrow{AP}•\overrightarrow{AQ}$的取值范围;
②若直线AP,AQ与直线l分别相交于M,N两点,求证:两动点M,N的纵坐标之积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若存在2≤x≤3使不等式x2-ax+1≤0成立,则实数a的取值范围是$[\frac{5}{2},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算:sin50°+$\sqrt{3}$tan10°cos40°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若在区间(a,b)上任意x满足f(x)>0,f′(x)>0,f″(x)>0,其中f′(x)为f(x)的导数,f″(x)是f′(x)的导数,则称f(x)是区间(a,b)上的“δ”函数.已知函数φ(x)=$\frac{m}{3}$x3-$\frac{1}{2}$x2-x+ex是区间(0,+∞)上的“δ”函数.
(1)实数m的取值范围是m>-$\frac{1}{2}$;
(2)若g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2-x+ex,记S1=${∫}_{a}^{b}$g(x)dx,S2=$\frac{g(a)+g(b)}{2}$•(b-a),S3=g(a)(b-a),其中b>a>0,则S1,S2,S3中最大的为s2>s1>s3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在空间中,下列结论正确的是(  )
A.平行于同一直线的两直线平行B.垂直于同一直线的两直线平行
C.平行于同一平面的两直线平行D.垂直于同一平面的两直线垂直

查看答案和解析>>

同步练习册答案