精英家教网 > 高中数学 > 题目详情
14.计算:${∫}_{-2010}^{2010}$(sin2011x+x2011)dx=0.

分析 根据被积函数为奇函数即可得到答案.

解答 解:设f(x)=sin2011x+x2011
∴f(-x)=sin2011(-x)+(-x)2011=-f(x),
∴f(x)为奇函数,
又∵积分上下限关于原点对称,
∴${∫}_{-2010}^{2010}$(sin2011x+x2011)dx=0,
故答案为:0

点评 本题考查了定积分的计算,关键是判断出被积函数为奇函数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知三棱锥P-ABC的底面是边长为3的正三角形ABC,PA与平面ABC所成角为60°,且PA=2,若点Q满足$\overrightarrow{PQ}$=$\frac{1}{4}$($\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$),则三棱锥Q-ABC的体积为$\frac{9}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.对椭圆有结论一:椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点为F(c,0),过点P($\frac{a^2}{c}$,0)的直线l交椭圆于M,N两点,点M关于x轴的对称点为M′,则直线M′N过点F.类比该结论,对双曲线有结论二,根据结论二知道:双曲线C′:$\frac{x^2}{3}$-y2=1的右焦点为F,过点P($\frac{3}{2}$,0)的直线与双曲线C′右支有两交点M,N,若点N的坐标是(3,$\sqrt{2}$),则在直线NF与双曲线的另一个交点坐标是$(\frac{9}{5},-\frac{{\sqrt{2}}}{5})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若存在2≤x≤3使不等式x2-ax+1≤0成立,则实数a的取值范围是$[\frac{5}{2},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算:sin50°+$\sqrt{3}$tan10°cos40°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右焦点分别为F,F′,双曲线C2:$\frac{x^2}{{{a^2}-{b^2}}}-\frac{y^2}{b^2}$=1与椭圆C1在第一象限的一个交点为P,有以下四个结论:
①$\overrightarrow{PF}•\overrightarrow{P{F^'}}$>0,且三角形PFF′的面积小于b2
②当a=$\sqrt{2}$b时,∠PF′F-∠PFF′=$\frac{π}{2}$;
③分别以PF,FF′为直径作圆,这两个圆相内切; 
④曲线C1与C2的离心率互为倒数.
其中正确的有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若在区间(a,b)上任意x满足f(x)>0,f′(x)>0,f″(x)>0,其中f′(x)为f(x)的导数,f″(x)是f′(x)的导数,则称f(x)是区间(a,b)上的“δ”函数.已知函数φ(x)=$\frac{m}{3}$x3-$\frac{1}{2}$x2-x+ex是区间(0,+∞)上的“δ”函数.
(1)实数m的取值范围是m>-$\frac{1}{2}$;
(2)若g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2-x+ex,记S1=${∫}_{a}^{b}$g(x)dx,S2=$\frac{g(a)+g(b)}{2}$•(b-a),S3=g(a)(b-a),其中b>a>0,则S1,S2,S3中最大的为s2>s1>s3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,(2$\overrightarrow{a}$-3$\overrightarrow{b}$)(2$\overrightarrow{a}$+$\overrightarrow{b}$)=61,在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow{b}$,求△ABC的内角A的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{ax+b}{x}{e^x}$,a,b∈R,且a>0
(1)当a=2,b=1,求函数f(x)的极值;
(2)设g(x)=a(x-1)ex-f(x),若存在x>1,使得g(x)+g′(x)=0成立,求$\frac{b}{a}$的取值范围.

查看答案和解析>>

同步练习册答案