19£®ÒÑÖªÍÖÔ²C1£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄ×óÓÒ½¹µã·Ö±ðΪF£¬F¡ä£¬Ë«ÇúÏßC2£º$\frac{x^2}{{{a^2}-{b^2}}}-\frac{y^2}{b^2}$=1ÓëÍÖÔ²C1ÔÚµÚÒ»ÏóÏÞµÄÒ»¸ö½»µãΪP£¬ÓÐÒÔÏÂËĸö½áÂÛ£º
¢Ù$\overrightarrow{PF}•\overrightarrow{P{F^'}}$£¾0£¬ÇÒÈý½ÇÐÎPFF¡äµÄÃæ»ýСÓÚb2£»
¢Úµ±a=$\sqrt{2}$bʱ£¬¡ÏPF¡äF-¡ÏPFF¡ä=$\frac{¦Ð}{2}$£»
¢Û·Ö±ðÒÔPF£¬FF¡äΪֱ¾¶×÷Ô²£¬ÕâÁ½¸öÔ²ÏàÄÚÇУ» 
¢ÜÇúÏßC1ÓëC2µÄÀëÐÄÂÊ»¥Îªµ¹Êý£®
ÆäÖÐÕýÈ·µÄÓУ¨¡¡¡¡£©
A£®4¸öB£®3¸öC£®2¸öD£®1¸ö

·ÖÎö ¸ù¾ÝÌâÒ⣬д³öF¡ä¡¢F¡¢B1¸÷µã×ø±ê£¬Í¨¹ýÁªÁ¢ÍÖÔ²ÓëË«ÇúÏߵķ½³Ì¼°µãPÔÚµÚÒ»ÏóÏÞ£¬¿ÉµÃP£¨$\frac{a\sqrt{2£¨{a}^{2}-{b}^{2}£©£¨2{a}^{2}-{b}^{2}£©}}{2{a}^{2}-{b}^{2}}$£¬$\frac{{b}^{2}\sqrt{2{a}^{2}-{b}^{2}}}{2{a}^{2}-{b}^{2}}$£©£¬¢Ùͨ¹ý¼ÆËã$\overrightarrow{PF}•\overrightarrow{P{F^'}}$¡¢
S¡÷PFF¡ä£¬¿ÉµÃ¢ÙÕýÈ·£»¢Úµ±a=$\sqrt{2}$bʱ£¬Í¨¹ý¼ÆËã¿ÉµÃcos£¨¡ÏPF¡äF-¡ÏPFF¡ä£©=cos¡ÏPF¡äFcos¡ÏPFF¡ä+sin¡ÏPF¡äFsin¡ÏPFF¡ä=0£¬¹Ê¢ÚÕýÈ·£»¢Û¾Ù³ö·´Àý£¬µ±a=$\sqrt{2}$bʱ²»³ÉÁ¢£¬¹Ê¢Û²»ÕýÈ·£» ¢ÜÖ±½Ó¼ÆËã³öÇúÏßC1ÓëC2µÄÀëÐÄÂʼ´¿É¢ÜÕýÈ·£®

½â´ð ½â£º¸ù¾ÝÌâÒ⣬µÃF¡ä£¨$\sqrt{{a}^{2}-{b}^{2}}$£¬0£©£¬F£¨-$\sqrt{{a}^{2}-{b}^{2}}$£¬0£©£¬B1£¨0£¬b£©£¬
ÁªÁ¢ÍÖÔ²ÓëË«ÇúÏߵķ½³Ì$\left\{\begin{array}{l}{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\\{\frac{{x}^{2}}{{a}^{2}-{b}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$£¬ÏûÈ¥y£¬µÃ${x}^{2}=\frac{2{a}^{2}£¨{a}^{2}-{b}^{2}£©}{2{a}^{2}-{b}^{2}}$£¬
ÓÖ¡ßµãPÔÚµÚÒ»ÏóÏÞ£¬¡àP£¨$\frac{a\sqrt{2£¨{a}^{2}-{b}^{2}£©£¨2{a}^{2}-{b}^{2}£©}}{2{a}^{2}-{b}^{2}}$£¬$\frac{{b}^{2}\sqrt{2{a}^{2}-{b}^{2}}}{2{a}^{2}-{b}^{2}}$£©£¬
¢Ù$\overrightarrow{PF}•\overrightarrow{P{F^'}}$=£¨-$\sqrt{{a}^{2}-{b}^{2}}$-$\frac{a\sqrt{2£¨{a}^{2}-{b}^{2}£©£¨2{a}^{2}-{b}^{2}£©}}{2{a}^{2}-{b}^{2}}$£¬-$\frac{{b}^{2}\sqrt{2{a}^{2}-{b}^{2}}}{2{a}^{2}-{b}^{2}}$£©•£¨$\sqrt{{a}^{2}-{b}^{2}}$-$\frac{a\sqrt{2£¨{a}^{2}-{b}^{2}£©£¨2{a}^{2}-{b}^{2}£©}}{2{a}^{2}-{b}^{2}}$£¬-$\frac{{b}^{2}\sqrt{2{a}^{2}-{b}^{2}}}{2{a}^{2}-{b}^{2}}$£©
=2$\frac{{a}^{2}£¨{a}^{2}-{b}^{2}£©}{2{a}^{2}-{b}^{2}}$-£¨a2-b2£©+$\frac{{b}^{4}}{2{a}^{2}-{b}^{2}}$
=$\frac{{a}^{2}{b}^{2}}{2{a}^{2}-{b}^{2}}$£¾0£¬
Èý½ÇÐÎPFF¡äµÄÃæ»ýΪ$\frac{1}{2}|F¡äF|y$=$\sqrt{{a}^{2}-{b}^{2}}$¡Á$\frac{{b}^{2}\sqrt{2{a}^{2}-{b}^{2}}}{2{a}^{2}-{b}^{2}}$£¼b2£¬¹Ê¢ÙÕýÈ·£»
¢Úµ±a=$\sqrt{2}$bʱ£¬ÓÐa2=2b2£¬ÔòF¡ä£¨b£¬0£©£¬F£¨-b£¬0£©£¬$P£¨\frac{2\sqrt{3}b}{3}£¬\frac{\sqrt{3}b}{3}£©$£¬
¡à$\overrightarrow{F¡äP}$=£¨$\frac{2\sqrt{3}-3}{3}b$£¬$\frac{\sqrt{3}b}{3}$£©£¬$\overrightarrow{FP}$=£¨$\frac{2\sqrt{3}+3}{3}b$£¬$\frac{\sqrt{3}b}{3}$£©£¬$\overrightarrow{F¡äF}$=£¨-2b£¬0£©£¬
¡à$|\overrightarrow{F¡äP}|$=$\frac{\sqrt{6}£¨\sqrt{3}-1£©b}{3}$£¬$|\overrightarrow{FP}|$=$\frac{\sqrt{6}£¨\sqrt{3}+1£©b}{3}$£¬$|\overrightarrow{F¡äF}|$=2b£¬
¡àcos¡ÏPF¡äF=$\frac{\overrightarrow{F¡äF}•\overrightarrow{F¡äP}}{|\overrightarrow{F¡äF}||\overrightarrow{F¡äP}|}$=$\frac{\sqrt{2}-\sqrt{6}}{4}$£¬cos¡ÏPFF¡ä=$\frac{\overrightarrow{FF¡ä}•\overrightarrow{FP}}{|\overrightarrow{FF¡ä}||\overrightarrow{FP}|}$=$\frac{\sqrt{2}+\sqrt{6}}{4}$£¬
¡àsin¡ÏPF¡äF=$\frac{\sqrt{2}+\sqrt{6}}{4}$£¬sin¡ÏPFF¡ä=$\frac{\sqrt{6}-\sqrt{2}}{4}$»ò$\frac{\sqrt{2}-\sqrt{6}}{4}$£¨Éᣩ£¬
¡ßcos£¨¡ÏPF¡äF-¡ÏPFF¡ä£©=cos¡ÏPF¡äFcos¡ÏPFF¡ä+sin¡ÏPF¡äFsin¡ÏPFF¡ä
=$\frac{\sqrt{2}-\sqrt{6}}{4}$¡Á$\frac{\sqrt{2}+\sqrt{6}}{4}$+$\frac{\sqrt{2}+\sqrt{6}}{4}$¡Á$\frac{\sqrt{6}-\sqrt{2}}{4}$=0£¬
¡à¡ÏPF¡äF-¡ÏPFF¡ä=$\frac{¦Ð}{2}$£¬¹Ê¢ÚÕýÈ·£»
¢Ûµ±a=$\sqrt{2}$bʱ£¬Ïß¶ÎPFµÄÖеãΪM£¨$\frac{2\sqrt{3}-3}{6}b$£¬$\frac{\sqrt{3}}{6}b$£©£¬
ÔòOM=$\frac{\sqrt{6}£¨\sqrt{3}-1£©b}{6}$£¬MF=$\frac{\sqrt{6}£¨\sqrt{3}+1£©}{6}b$£¬OF=2b£¬
¡ßMF-OF=$\frac{\sqrt{6}£¨\sqrt{3}+1£©}{6}b$-2b£¼$\frac{\sqrt{6}£¨\sqrt{3}-1£©b}{6}$=OM£¬¹Ê¢Û²»ÕýÈ·£» 
¢ÜÇúÏßC1ÓëC2µÄÀëÐÄÂÊ·Ö±ðΪ£º
e1=$\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}$£¬e2=$\frac{\sqrt{{a}^{2}-{b}^{2}+{b}^{2}}}{\sqrt{{a}^{2}-{b}^{2}}}$=$\frac{a}{\sqrt{{a}^{2}-{b}^{2}}}$£¬¹Ê¢ÜÕýÈ·£»
×ÛÉÏËùÊö£¬ÃüÌâ¢Ù¢Ú¢ÜÕýÈ·£¬
¹ÊÑ¡£ºB£®

µãÆÀ ±¾Ì⿼²éÔ²×¶ÇúÏߵļòµ¥ÐÔÖÊ£¬ÏòÁ¿ÊýÁ¿»ýÔËË㣬Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ£¬Èý½Çº¯Êý²î½Ç¹«Ê½£¬Öеã×ø±ê¹«Ê½£¬Ô²ÓëÔ²µÄλÖùØÏµ£¬¿¼²é·ÖÎöÎÊÌâ¡¢½â¾öÎÊÌâµÄÄÜÁ¦£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=x2+£¨x-1£©|x-a|£¬Èôº¯Êýf£¨x£©ÔÚ[2£¬3]×îСֵΪ6£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Ö±Ïßy=kxÓëÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©½»ÓÚA¡¢BÁ½µã£¬FΪÍÖÔ²CµÄ×󽹵㣬ÇÒ$\overrightarrow{AF}$•$\overrightarrow{BF}$=0£¬Èô¡ÏABF¡Ê£¨0£¬$\frac{¦Ð}{12}$]£¬ÔòÍÖÔ²CµÄÀëÐÄÂʵÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨0£¬$\frac{\sqrt{2}}{2}$]B£®£¨0£¬$\frac{\sqrt{6}}{3}$]C£®[$\frac{\sqrt{2}}{2}$£¬$\frac{\sqrt{6}}{3}$]D£®[$\frac{\sqrt{6}}{3}$£¬1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬CDÊÇ¡ÏACBµÄ½Çƽ·ÖÏߣ¬¡÷ADCµÄÍâ½ÓÔ²½»BCÓÚµãE£¬AB=2AC=6£¬EC=6£¬ÔòADµÄ³¤Îª$\frac{3}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®¼ÆË㣺${¡Ò}_{-2010}^{2010}$£¨sin2011x+x2011£©dx=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬ÔÚ¾ØÐÎABCDÖУ¬AB=$\sqrt{2}$£¬BC=2£¬µãEΪBCµÄÖе㣬µãFÔÚ±ßCDÉÏ£¬Èô$\overrightarrow{AB}$•$\overrightarrow{AF}$=$\sqrt{2}$£¬Çó$\overrightarrow{AE}$•$\overrightarrow{AF}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔÚ¹«²îΪdµÄµÈ²îÊýÁÐ{an}ÖУ¬ÒÑÖªa1=10£¬ÇÒ£¨2a2+2£©2=5a1a3
£¨1£©Ç󹫲îd¼°ÊýÁÐ{an}ͨÏʽ£»
£¨2£©Èôd£¼0£¬Çó|a1|+|a2|+¡­+|an|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èôsinx=-$\frac{1}{3}$£¬x¡Ê[0£¬2¦Ð]£¬ÇóxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬ÒÑÖª¡ÑO1Óë¡ÑO2ÏཻÓÚA¡¢BÁ½µã£¬PÊÇ¡ÑO1ÉÏÒ»µã£¬PBµÄÑÓ³¤Ïß½»¡ÑO2ÓÚµãC£¬PA½»¡ÑO2ÓÚµãD£¬CDµÄÑÓ³¤Ïß½»¡ÑO1ÓÚµãN£®
£¨1£©µãEÊÇ$\widehat{AN}$ÉÏÒìÓÚA£¬NµÄÈÎÒâÒ»µã£¬PE½»CNÓÚµãM£¬ÇóÖ¤£ºA£¬D£¬M£¬EËĵ㹲Բ
£¨2£©ÇóÖ¤£ºPN2=PB•PC£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸