精英家教网 > 高中数学 > 题目详情
15.“a>b”是“3a>2b”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 根据不等式的性质结合充分条件和必要条件的定义进行判断.

解答 解:由a>b⇒3a>3b,当b≤0时,3b≤2b,故a>b”推不出“3a>2b”,
由3a>2b推不出a>b,当a=b时,3>2,
故“a>b”是“3a>2b”既不充分也不必要条件,
故选:D

点评 本题主要考查充分条件和必要条件的判断,根据不等式的关系是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的渐近线为等边三角形OAB的边OA,OB所在直线,直线AB过双曲线的焦点,且|AB|=2,则a=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2,若以A1A2为直径的圆内切于菱形F1B1F2B2,则双曲线的离心率是(  )
A.$\sqrt{5}$-1B.$\frac{3+\sqrt{5}}{2}$C.$\frac{\sqrt{5}+1}{2}$D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F2(1,0),点H(2,$\frac{2\sqrt{10}}{3}$)在椭圆上
(Ⅰ)求椭圆的方程;
(Ⅱ)第一象限内一点M在圆C:x2+y2=b2上,过M作圆C的切线交椭圆于P,Q两点.问:△PF2Q的周长是否为定值,若是,求出定值,不是的话说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.甲、乙两盒中各装有大小相同的小球9个,其中甲盒中红色、黑色、白色小球的个数分别为2,3,4;乙盒中红色、黑色、白色小球的个数均为3.学生A从甲盒中取球,学习B从乙盒中取球.
(Ⅰ)若A,B各取一球,求两人所取的球颜色不同的概率;
(Ⅱ)若每人依次各取2球,称同一人手中两球盐酸相同的取法为成功取法,记成功取法次数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$过点A(1,1),它的焦点F在其渐近线上的射影记为M,且△OFM(O为原点)的面积为$\frac{{\sqrt{2}}}{4}$.
(Ⅰ)求双曲线的方程;
(Ⅱ)过点A作双曲线的两条动弦AB,AC,设直线AB,直线AC的斜率分别为k1,k2,且(k1+1)(k2+1)=-1恒成立,证明:直线BC的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=|x|+\frac{m}{x}-2$(x≠0).
(1)当m=2时,判断f(x)在(-∞,0)的单调性,并用定义证明;
(2)讨论f(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.定义在R上的函数f(x)=asinωx+bcosωx+1(ω>1,a>0,b>0)的周期为π,$f({\frac{π}{4}})=\sqrt{3}+1$,且f(x)的最大值为3.
(1)求f(x)的表达式;
(2)求f(x)的对称中心和对称轴;
(3)说明f(x)的图象由y=2sinx的图象经过怎样的变换得到.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.一般来说,一个人脚掌越长,他的身高就越高.现对10名成年人的脚掌x与身高y进行测量,得到数据(单位:cm)作为一个样本如下表示:
脚掌长(  )20212223242526272829
身高(  )141146154160169176181188197203
(1)在上表数据中,以“脚掌长”为横坐标,“身高”为纵坐标,作出散点图后,发现散点在一条直线附近,试求“身高”与“脚掌长”之间的线性回归方程$\widehaty=\widehatbx+\widehata$;
(2)若某人的脚掌长为26.5cm,试估计此人的身高;
(3)在样本中,从身高180cm以上的4人中随机抽取2人作进一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率.
附:线性回归方程$\widehaty=\widehatbx+\widehata$中,$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{{{\sum_{i=1}^n{({{x_i}-\overline x})}}^2}}}$,$\widehata=\overline y-\widehatb\overline x$,其中$\overline x$,$\overline y$为样本平均值.
参考数据:$\sum_{i=1}^{10}{({x_i}-\bar x)({y_i}-\bar y)}=577.5$,$\sum_{i=1}^{10}{{{({x_i}-\bar x)}^2}=82.5}$.

查看答案和解析>>

同步练习册答案