精英家教网 > 高中数学 > 题目详情
2.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(1,-2),若m$\overrightarrow{a}$+n$\overrightarrow{b}$=(9,-8)(m,n∈R),则m-n的值为-3.

分析 直接利用向量的坐标运算,求解即可.

解答 解:向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(1,-2),若m$\overrightarrow{a}$+n$\overrightarrow{b}$=(9,-8)
可得$\left\{\begin{array}{l}2m+n=9\\ m-2n=-8\end{array}\right.$,解得m=2,n=5,
∴m-n=-3.
故答案为:-3.

点评 本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|x-a|,关于x的不等式|f(2x+a)-2f(x)|≤2的解集为{x|1≤x≤2},求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.定义运算“?”x?y=$\frac{{x}^{2}-{y}^{2}}{xy}$(x,y∈R,xy≠0).当x>0,y>0时,x?y+(2y)?x的最小值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有(  )
A.144个B.120个C.96个D.72个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$,n=$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$.现有如下命题:
①对于任意不相等的实数x1、x2,都有m>0;
②对于任意的a及任意不相等的实数x1、x2,都有n>0;
③对于任意的a,存在不相等的实数x1、x2,使得m=n;
④对于任意的a,存在不相等的实数x1、x2,使得m=-n.
其中的真命题有①④(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.复数i(2-i)=(  )
A.1+2iB.1-2iC.-1+2iD.-1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若集合M={-1,1},N={-2,1,0}则M∩N=(  )
A.{0.-1}B.{0}C.{1}D.{-1,1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知(2,0)是双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的一个焦点,则b=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是(  )
A.2x+y+5=0或2x+y-5=0B.2x+y+$\sqrt{5}$=0或2x+y-$\sqrt{5}$=0
C.2x-y+5=0或2x-y-5=0D.2x-y+$\sqrt{5}$=0或2x-y-$\sqrt{5}$=0

查看答案和解析>>

同步练习册答案