精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=kx3-3(k+1)x2-k2+1(k>0),若f(x)的单调递减区间为(0,4),单调递增区间为(-∞,0)与(4,+∞),求k的值.

分析 先求导函数f′(x),令f′(x)<0,求出函数f(x)的单调减区间,而f(x)的单调减区间为(0,4),它们是同一区间,建立等式关系,即可求出k的值.

解答 解:f′(x)=3kx2-6(k+1)x=0(k>0),
解得:x=0或$\frac{2k+2}{k}$而 $\frac{2k+2}{k}$>2,
令f′(x)=3kx2-6(k+1)x<0,解得x∈(0,$\frac{2k+2}{k}$),
∴f(x)的单调减区间为(0,$\frac{2k+2}{k}$),
根据题意可知(0,4)=(0,$\frac{2k+2}{k}$),
即$\frac{2k+2}{k}$=4,解得k=1,
所以k的值为1.

点评 本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,同时考查了分析与解决问题的综合能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.点P(2,5)关于直线x+y=0的对称点的坐标为(-5,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=$\frac{cosx}{cos(\frac{π}{2}+\frac{π}{4})}$的值域为[-$\sqrt{2}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.确定下列三角函数值的符号:
(1)sin186°;(2)tan505°;(3)sin7.6π;
(4)tan(-$\frac{23π}{4}$);(5)cos940°;(6)cos(-$\frac{59π}{17}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.与2011°角的终边相同的最小正角是211°,绝对值最小的角是-169°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x(0<x<2)}\\{-{x}^{2}+8x-15(x≥2)}\end{array}\right.$,g(x)=kx-2,若方程f(x)=g(x)有三个根,则实数k的取值范围是(  )
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,1)C.(-2$\sqrt{13}$+8,1)D.($\frac{1}{2}$,-2$\sqrt{13}$+8)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{{a}^{x}+b,x≤0}\end{array}\right.$,且f(0)=2,f(-1)=3,则f(f(-3))=(  )
A.-2B.2C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x)对任意的实数x1,x2∈D,均有|f(x1)-f(x2)|≤|x1-x2|,则称函数f(x)是区间D上的“缓缓函数”,有以下几种说法:
①y=x2-x不是R上的“缓缓函数”;
②己知函数y=x+sinx,y=x-sinx都是R上的增函数,则y=sinx是R上的“缓缓函数”;
③已知函数y=x+sinx,y=x-sinx都是R上的增函数,则y=sinx不是R上的“缓缓函数”;
④若数列{xn}满足|xn+1-xn|≤$\frac{1}{(2n+1)^{2}}$,设yn=sinxn,则有:|yn+1-y1|<$\frac{1}{6}$
把你认为正确的选项都填在横线上①②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一个物体运动的位移和时间的关系为s=t2-t,其中s的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是(  )
A.5米/秒B.6米/秒C.7米/秒D.8米/秒

查看答案和解析>>

同步练习册答案