精英家教网 > 高中数学 > 题目详情
已知分别是双曲线的左、右焦点,是双曲线上的一点,若构成公差为正数的等差数列,则的面积为
A.B.C.  D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分18分,第(1)小题4分,第(2)小题8分,第(3)小题6分)
已知双曲线的一个焦点是,且
(1)求双曲线的方程;
(2)设经过焦点的直线的一个法向量为,当直线与双曲线的右支相交于不同的两点时,求实数的取值范围;并证明中点在曲线上.
(3)设(2)中直线与双曲线的右支相交于两点,问是否存在实数,使得为锐角?若存在,请求出的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)已知椭圆C的中心在坐标原点,焦点在x轴上,离心率.直线:与椭圆C相交于两点, 且
(1)求椭圆C的方程
(2)点P(,0),A、B为椭圆C上的动点,当时,求证:直线AB恒过一个定点.并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知,椭圆C的方程为分别为椭圆C的两个焦点,设为椭圆C上一点,存在以为圆心的外切、与内切
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点作斜率为的直线与椭圆C相交于AB两点,与轴相交于点D,若
的值;
(Ⅲ)已知真命题:“如果点T()在椭圆上,那么过点T
的椭圆的切线方程为=1.”利用上述结论,解答下面问题:
已知点Q是直线上的动点,过点Q作椭圆C的两条切线QMQN
MN为切点,问直线MN是否过定点?若是,请求出定点坐标;若不是,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)已知椭圆的两个焦点分别为F1(-c,0),F2(c,0),(c>0),过点E的直线与椭圆交于A、B两点,且F1A//F2B,|F1A|=2|F2B|,
(1)求离心率;
2)求直线AB的斜率;
(3)设点C与点A关于标标原点对称,直线F2B上有一点H(m,n)(m≠0)在△AF1C的外接圆上,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线与双曲线有相同的焦点,点是两曲线的一个交点,轴,若直线是双曲线的一条渐近线,则直线的倾斜角所在的区间可能为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

从极点作圆,则各弦中点的轨迹方程为__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,椭圆C:的右焦点为,直线的方程为,点A在直线上,线段AF交椭圆C于点B,若,则直线AF的倾斜角的大小为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

经过抛物线的焦点,且倾斜角为的直线方程为             (   )
A.B.
C..mD.

查看答案和解析>>

同步练习册答案