精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
x3-
a+1
2
x2+bx+a(a,b∈R),且其导函数f′(x)的图象过原点.
(1)当a=1时,求函数f(x)的图象在x=3处的切线方程;
(2)若存在x≤-2,使得f′(x)=-9,求a的最大值.
考点:利用导数研究曲线上某点切线方程,利用导数求闭区间上函数的最值
专题:综合题,导数的综合应用
分析:(1)求导数,利用导数的几何意义,即可求出函数f(x)的图象在x=3处的切线方程;
(2)先对函数f(x)进行求导,根据f′(x)=-9建立等量关系,再结合基本不等式求出最大值,注意不等式运用的条件
解答: 解:f(x)=
1
3
x3-
a+1
2
x2+bx+a,f′(x)=x2-(a+1)x+b
由f′(0)=0得b=0,f′(x)=x(x-a-1).
(1)当a=1时,f′(x)=x(x-2).
∴f′(3)=1,f(3)=3,
∴函数f(x)的图象在x=3处的切线方程为y-1=3(x-3),即3x-y-8=0;
(2)存在x≤-2,使得f′(x)=x(x-a-1)=-9,
-a-1=-x-
9
x
=(-x)+(-
9
x
)≥6,
∴a≤-7,
当且仅当x=-3时,a=-7.所以a的最大值为-7.
点评:本题主要考查了利用导数求切线方程,以及基本不等式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}是等差数列,a1=f(x+1),a2=0,a3=f(x-1),其中f(x)=x2-4x+2,求该数列的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax+b2,a∈R,b∈R.
(Ⅰ)若a从集合{0,1,2,3,4}中任取一个元素,b从集合{0,1,2,3}中任取一个元素,求方程f(x)=0有两个不相等实根的概率;
(Ⅱ)若a从区间[0,3]中任取一个数,b从区间[0,4]中任取一个数,求方程f(x)=0没有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在(x-y)10的展开式中,求x7y3的系数与x3y7的系数之和;
(2)4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲.乙两道题中任选一题作答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分.若4位同学的总分为0,求这4位同学不同得分情况的种数.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c,且c2=a2+b2-ab.
(Ⅰ)若tanA-tanB=
3
3
(1+tanA•tanB),求角B;
(Ⅱ)设
m
=(sinA,1),
n
=(3,cos2A),试求
m
n
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在海南省第二十四届科技创新大赛活动中,某同学为研究“网络游戏对当代青少年的影响”作了一次调查,共调查了50名同学,其中男生26人,有8人不喜欢玩电脑游戏,而调查的女生中有9人喜欢玩电脑游戏.
(1)根据以上数据建立一个2×2的列联表;
(2)根据以上数据,在犯错误的概率不超过0.025的前提下,能否认为“喜欢玩电脑游戏与性别有关系”?
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,曲线C1的参数方程为:
x=
3
cosθ
y=2sinθ
(θ为参数),以直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ-sinθ)=6.
(Ⅰ)试写出直线l的直角坐标方程和曲线C1的普通方程;
(Ⅱ)在曲线C1上求一点P,使点P到直线l的距离最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示.在△ABC中∠C=90°,∠A的平分线AE交BA上的高CH于D点,过D引AB的平行线交BC于F.求证:BF=EC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知对任意平面向量
AB
=(x,y),把
AB
绕其起点沿逆时针方向旋转θ角得到向量:
AP
=(xcosθ-ysinθ,xsinθ+ycosθ),叫做把点B绕点A逆时针方向旋转θ角得到点P.
(1)已知平面内点A(1,2),点B(-1,2-2
3
),把点B绕点A逆时针方向旋转
π
3
后得到点P的坐标是
 

(2)设平面内曲线C:y=-
1
2x
上的每一点绕坐标原点沿逆时针方向旋转
π
4
后得到的点的轨迹方程是:
 

查看答案和解析>>

同步练习册答案