精英家教网 > 高中数学 > 题目详情
在△ABC中,角A、B、C所对的边分别为a、b、c,且c2=a2+b2-ab.
(Ⅰ)若tanA-tanB=
3
3
(1+tanA•tanB),求角B;
(Ⅱ)设
m
=(sinA,1),
n
=(3,cos2A),试求
m
n
的最大值.
考点:余弦定理,平面向量数量积的运算
专题:解三角形
分析:(I)利用余弦定理、两角和差的正切公式、正切函数的单调性即可得出.
(II)利用数量积运算、倍角公式、二次函数的单调性即可得出.
解答: 解:(I)∵c2=a2+b2-ab,∴cosC=
a2+b2-c2
2ab
=
ab
2ab
=
1
2

∵C∈(0,π),∴C=
π
3

∵tanA-tanB=
3
3
(1+tanA•tanB),∴tan(A-B)=
tanA-tanB
1+tanAtanB
=
3
3

∵A,B∈(0,
3
)
,∴-
3
<A-B<
3
,∴A-B=
π
6

∴B=
3
-A
=
3
-(B+
π
6
)
,解得B=
π
4

(2)
m
n
=3sinA+cos2A=-2sin2A+3sinA+1=-2(sinA-
3
4
)2+
17
8

由(I)可得A∈(0,
3
)
,∴当sinA=
3
4
时,
m
n
取得最大值
17
8
点评:本题考查了余弦定理、两角和差的正切公式、正切函数的单调性、数量积运算、倍角公式、二次函数的单调性,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设抛物线顶点在原点,开口向上,A为抛物线上一点,F为抛物线焦点,M为准线l与y轴的交点已知a=|AM|=
17
,|AF|=3,求此抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,△ABC中,∠B=90°,AB=
2
,BC=1,D、E两点分别是线段AB、AC的中点,现将△ABC沿DE折成直二面角A-DE-B.

(Ⅰ)求证:面ADC⊥面ABE;
(Ⅱ)求直线AD与平面ABE所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.
(1)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;
(2)表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2
表1:注射药物A后皮肤疱疹面积的频数分布表
疱疹面积[60,65)[65,70)[70,75)[75,80)
频数30402010
表2注射药物B后皮肤疱疹面积的频数分布表
疱疹面积[60,65)[65,70)[70,75)[75,80)[80,85)
频数1025203015
(Ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;
(Ⅱ)分别估计出注射A,B两种药物后产生的皮肤疱疹的面积不小于70mm2的概率各是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2(x>0),设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N*),其中x1=1
(1)求证数列{xn}是等比数列,并求其通项公式;
(2)令bn=n•xn,是否存在最小的正整数M,使得对任意n∈N*,都有b1+b2+b3+…+bn<M恒成立?若存在,求出M的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
a+1
2
x2+bx+a(a,b∈R),且其导函数f′(x)的图象过原点.
(1)当a=1时,求函数f(x)的图象在x=3处的切线方程;
(2)若存在x≤-2,使得f′(x)=-9,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在各项均为正数的等比数列{an}中,已知a2=2,a5=16,求:
(1)a1与公比q的值;
(2)数列前6项的和S6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=mx-
m
x
,g(x)=2lnx
(1)当m=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当m=1时,判断方程f(x)=g(x)的实根个数;
(3 )若x∈(1,e]时,不等式f(x)-g(x)<2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

“m<2”是“一元二次不等式x2+mx+1>0的解集为R”的
 
条件(用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”填空)

查看答案和解析>>

同步练习册答案