精英家教网 > 高中数学 > 题目详情
已知函数f(x)=a•4x-2x+1+a+3.
(1)若a=0,解方程f(2x)=-5;
(2)若a=1,求f(x)的单调区间;
(3)若存在实数x0∈[-1,1],使f(x0)=4,求实数a的取值范围.
分析:(1)将a=0代入,可得指数方程,求解即可;
(2)a=1代入,再利用单调性的定义,注意分类讨论,从而确定函数的单调区间;
(3)设2x=t,由x0∈[-1,1],得t∈[
1
2
,2]
,且f(x)=a•4x-2x+1+a+3=a•t2-2t+a+3,所以存在t∈[
1
2
,2]
,使得a•t2-2t+a+3=4,即a•t2-2t+a-1=0,构建函数,用函数的思想解决方程根的问题.
解答:解:(1)若a=0,由f(2x)=-5,即-22x+1+3=-5,
∴22x+1=8,∴22x+1=23
∴2x+1=3
∴x=1(2分)
(2)若a=1,则f(x)=4x-2x+1+4,设x1,x2∈R,且x1<x2
f(x2)-f(x1)=4x2-2x2+1+4-(4x1-2x1+1+4)=(4x2-4x1)-2(2x2-2x1)=(2x2-2x1)(2x2+2x1-2)
2x2-2x1>0
①当x1,x2∈[0,+∞)时,有2x2+2x1-2>0
(2x2-2x1)(2x2+2x1-2)>0
∴f(x2)>f(x1),
∴f(x)在[0,+∞)上是增函数;
②当x1,x2∈(-∞,0]时,有2x2+2x1-2<0
(2x2-2x1)(2x2+2x1-2)<0
∴f(x2)<f(x1),
∴f(x)在(-∞,0]上是减函数
∴f(x)的单调增区间是[0,+∞),单调减区间是(-∞,0](7分)
(3)设2x=t,由x0∈[-1,1],得t∈[
1
2
,2]
,且f(x)=a•4x-2x+1+a+3=a•t2-2t+a+3
∴存在t∈[
1
2
,2]
,使得a•t2-2t+a+3=4,即a•t2-2t+a-1=0
令g(t)=a•t2-2t+a-1,
若a=0,由f(x0)=4,无解.
若a≠0,则函数g(t)的对称轴是t=
1
a

由已知得方程g(t)=0在t∈[
1
2
,2]
上有实数解
g(
1
2
)g(2)≤0
a>0
1
2
1
a
≤2
△≥0
g(
1
2
)≥0
g(2)≥0

(
5
4
a-2)(5a-5)≤0
a>0
1
2
1
a
≤2
1-
5
2
a≥
8
5
a≥1
a≤
1+
5
2

1≤a≤
8
5
8
5
≤a≤
1+
5
2

∴实数a的取值范围为[1,
1+
5
2
]
点评:本题以指数函数为载体,考查指数方程,考查函数的单调性,同时考查存在性问题,解题时应注意正确分类.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案