精英家教网 > 高中数学 > 题目详情
18.若不等式|x+1|+|x-3|≥a对任意的实数x恒成立,则实数a的取值范围是(-∞,4].

分析 由条件根据绝对值的意义求得|x+2|+|x-3|的最小值为5,从而得到实数a的取值范围.

解答 解:由于|x+1|+|x-3|表示数轴上的x对应点到-1、3对应点的距离之和,它的最小值为4,
不等式|x+1|+|x-3|≥a对任意的实数x恒成立,故a≤4,
故答案为:(-∞,4].

点评 本题主要考查绝对值的意义,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.四棱锥P-ABCD的三视图如图所示,则该四棱锥的外接球的表面积为(  )
A.$\frac{81π}{5}$B.$\frac{81π}{20}$C.$\frac{101π}{5}$D.$\frac{101π}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,已知A=60°,$c=\sqrt{3}$,$b=2\sqrt{3}$,则a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知x,y满足$\left\{\begin{array}{l}y≥-1\\ x+y≤1\\ y≤x\end{array}\right.$,则z=2x+y的最小值是(  )
A.-3B.1C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.复数${z_1}=a+5+(10-{a^2})i$,z2=1-2a+(2a-5)i,其中a∈R.
(1)若a=-2,求z1的模;
(2)若$\overline{z_1}+{z_2}$是实数,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知全集U={1,2,3,4,5,6,7},集合A={2,4,5},B={1,3,5,7},则(∁UA)∩B={1,3,7}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数y=f(x)的导函数y=f′(x)的图象如图所示,则关于函数y=f(x),下列说法正确的是(  )
A.在x=-1处取得极大值B.在区间[-1,4]上是增函数
C.在x=1处取得极大值D.在区间[1,+∞)上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.为了加强某站的安全检查,从甲乙丙等5名候选民警中选2名作为安保人员,则甲乙丙中有2人被选中的概率为(  )
A.$\frac{3}{10}$B.$\frac{1}{10}$C.$\frac{3}{20}$D.$\frac{1}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一动圆P与圆A:(x+1)2+y2=1外切,而与圆B:(x-1)2+y2=r2(r>3或0<r<1)内切,那么动圆的圆心P的轨迹是(  )
A.椭圆B.双曲线
C.椭圆或双曲线一支D.抛物线

查看答案和解析>>

同步练习册答案