| A. | -3 | B. | 1 | C. | $\frac{3}{2}$ | D. | 3 |
分析 作出不等式组对应的平面区域,利用目标函数的几何意义,即可求最小值.
解答
解:作出不等式组$\left\{\begin{array}{l}y≥-1\\ x+y≤1\\ y≤x\end{array}\right.$对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最小,
此时z最小.
由$\left\{\begin{array}{l}{y=-1}\\{y=x}\end{array}\right.$,解得A(-1,-1),
代入目标函数z=2x+y得z=-1×2-1=-3.
即目标函数z=2x+y的最小值为-3.
故选:A.
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
科目:高中数学 来源: 题型:选择题
| A. | y=3sin x | B. | y=3sin 2x | C. | y=3sin$\frac{1}{2}$x | D. | y=$\frac{1}{3}$sin 2x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\sqrt{x}$)′=$\frac{1}{2\sqrt{x}}$ | B. | ($\frac{1}{x}$)′=-$\frac{1}{{x}^{2}}$ | C. | (lnx)′=$\frac{1}{x}$ | D. | (e-x)′=e-x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\sqrt{7}$ | D. | 2$\sqrt{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com