分析 (1)由已知可知q2+q-12=0,解得q=3,d=6-q,求得d,根据等差数列及等比数列通项公式,即可求得an与bn;
(2)由(1)可知,求得数列{an}前n项和为Sn,$\frac{1}{{S}_{n}}$=$\frac{2}{3}$×$\frac{1}{n(n+1)}$=$\frac{2}{3}$($\frac{1}{n}$-$\frac{1}{n+1}$),采用“裂项法”即可求得数列{$\frac{1}{{S}_{n}}$}的前n项和Tn.
解答 解:(1)等差数列{an}的公差为d,
a1+a2=12-q,S2=b2•q.
∴d=6-q,
∴12-q=b1•q2,
整理得:q2+q-12=0,解得:q=3或q=-4(舍去),
∴d=3,
an=3+3(n-1)=3n,
∴bn=3n-1,
(2)数列{an}前n项和为Sn,Sn=$\frac{(3+3n)n}{2}$=$\frac{3n(n+1)}{2}$,
$\frac{1}{{S}_{n}}$=$\frac{2}{3}$×$\frac{1}{n(n+1)}$=$\frac{2}{3}$($\frac{1}{n}$-$\frac{1}{n+1}$),
数列{$\frac{1}{{S}_{n}}$}的前n项和Tn,
Tn=$\frac{2}{3}$[(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$)],
=$\frac{2}{3}$(1-$\frac{1}{n+1}$),
=$\frac{2n}{3(n+1)}$,
数列{$\frac{1}{{S}_{n}}$}的前n项和Tn=$\frac{2n}{3(n+1)}$.
点评 本题考查求数列的通项公式,等差数列前n项和公式,“裂项法”求数列的前n项和,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 甲、乙波动大小一样 | B. | 甲的波动比乙的波动大 | ||
| C. | 乙的波动比甲的波动大 | D. | 甲、乙的波动大小无法比较 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | (1,2) | C. | (1,2] | D. | (2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>c>b | B. | a>b>c | C. | c>a>b | D. | c>b>a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 1 | C. | $\frac{\sqrt{2}}{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | πR2 | B. | $\frac{15}{16}$πR2 | C. | $\frac{9}{16}$πR2 | D. | $\frac{1}{2}$πR2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com