精英家教网 > 高中数学 > 题目详情
6.已知f(x)=$\left\{\begin{array}{l}{lo{g}_{a}(x+a-1),(x>1)}\\{(2a-1)x-a,(x≤1)}\end{array}\right.$满足对于任意的实数x1≠x2,都有$\frac{f{(x}_{1})-f{(x}_{2})}{{x}_{1}{-x}_{2}}>0$成立,则实数a的取值范围是(  )
A.(1,+∞)B.(1,2)C.(1,2]D.(2,+∞)

分析 由任意x1≠x2,都有$\frac{f{(x}_{1})-f{(x}_{2})}{{x}_{1}{-x}_{2}}>0$成立,得函数为增函数,根据分段函数单调性的性质建立不等式关系即可.

解答 解:∵f(x)满足对任意x1≠x2,都有$\frac{f{(x}_{1})-f{(x}_{2})}{{x}_{1}{-x}_{2}}>0$成立,
∴函数f(x)在定义域上为增函数,
则满足$\left\{\begin{array}{l}{a>1}\\{2a-1>0}\\{2a-1-a≤lo{g}_{a}(1+a-1)}\end{array}\right.$,
解得1<a≤2,
故选:C.

点评 本题主要考查分段函数单调性的应用,根据条件判断函数的单调性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.为了解某地区某种农产品的年产量x(单位:吨)对价格y(单位:千元/吨)和利润z的影响,对近五年该农产品的年产量和价格统计如表:
x12345
y76542
(1)求y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润z取到最大值?(保留两位小数)
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)=ax3+bx-3,其中a,b为常数,若f(-2)=2,则f(2)的值等于-8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(-3,1),求$\overrightarrow{a}$•$\overrightarrow{b}$,|$\overrightarrow{a}$|,|$\overrightarrow{b}$|,<$\overrightarrow{a}$,$\overrightarrow{b}$>.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,(x>0)}\\{{3}^{x},(x≤0)}\end{array}\right.$,则f[f($\frac{1}{4}$)]的值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q(q≠1),且a1+a2=12-q,S2=b2•q.
(I)求an与bn
(Ⅱ)求数列{$\frac{1}{{S}_{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.直线l被双曲线$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{2}$=1截得的弦长为3$\sqrt{2}$,且l的斜率为2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.y=$\frac{2x-1}{x+5}$的值域为(-∞,2)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)是(-3,6)上的增函数,求满足f(x+5)<f(0)的实数x的取值范围(-8,-5).

查看答案和解析>>

同步练习册答案