精英家教网 > 高中数学 > 题目详情
18.直线l被双曲线$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{2}$=1截得的弦长为3$\sqrt{2}$,且l的斜率为2,求直线l的方程.

分析 设直线l的方程为y=2x+t,代入双曲线的方程,消去y,可得x的二次方程,运用判别式大于0和韦达定理、弦长公式,计算即可得到所求直线方程.

解答 解:设直线l的方程为y=2x+t,
代入双曲线2x2-3y2=6,可得:
10x2+12tx+3t2+6=0,
设弦的端点坐标为(x1,y1),(x2,y2),
△=144t2-40(3t2+6)>0,
x1+x2=-$\frac{6t}{5}$,x1x2=$\frac{3{t}^{2}+6}{10}$,
可得弦长为$\sqrt{1+4}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$
=$\sqrt{5}$•$\sqrt{\frac{36{t}^{2}}{25}-\frac{4(3{t}^{2}+6)}{10}}$=3$\sqrt{2}$,
解得t=±5.满足判别式大于0.
则直线l的方程为y=2x±5.

点评 本题考查双曲线的方程和应用,考查直线方程和双曲线的方程联立,运用韦达定理和弦长公式,考查化简整理的运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.求函数f(x)=2x3-6x2+3,x∈[-2,4]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知a≥0,b≥0,a+b=1,求a4+b4的范围$[\frac{1}{8},1]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)=$\left\{\begin{array}{l}{lo{g}_{a}(x+a-1),(x>1)}\\{(2a-1)x-a,(x≤1)}\end{array}\right.$满足对于任意的实数x1≠x2,都有$\frac{f{(x}_{1})-f{(x}_{2})}{{x}_{1}{-x}_{2}}>0$成立,则实数a的取值范围是(  )
A.(1,+∞)B.(1,2)C.(1,2]D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在三角形AB中,$\overrightarrow{AB}$-$\overrightarrow{BC}$-$\overrightarrow{CA}$=2$\overrightarrow{AB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一圆锥底面半径为2,母线长为6,有一球在该圆锥内部且与它的侧面和底面都相切,则这个球的半径为(  )
A.$\sqrt{2}$B.1C.$\frac{\sqrt{2}}{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)若a是正实数,2a2+3b2=10,求a$\sqrt{2+{b}^{2}}$的最大值.
(2)已知a>0,b>0,a+b=1,求$\sqrt{a+\frac{1}{2}}$+$\sqrt{b+1}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.6个不同颜色的球放在5个不同的盒子中,要求每个盒子至少放一个球,有多少种方法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在不等式组$\left\{\begin{array}{l}{x-\sqrt{3}y+3≥0}\\{x+\sqrt{3}y+3≥0}\\{x≤3}\end{array}\right.$表示的平面区域内作圆M,则最大圆M的标准方程(x-1)2+y2=4.

查看答案和解析>>

同步练习册答案