分析 (I)利用等差数列与等比数列的通项公式可得an,Sn,再利用递推关系可得bn.
(II)${a_n}{b_n}=-2(2n-1)\frac{1}{3^n}$.利用“错位相减法”、等比数列的求和公式即可得出.
解答 解:(I)设{an}的公比为q(q>0),则$\left\{{\begin{array}{l}{{a_1}{q^2}-{a_1}=\frac{16}{27}}\\{{a_1}q=-\frac{2}{9}}\end{array}}\right.$,
∴3q2+8q-3=0,由q>0,解得$q=\frac{1}{3}$,${a_1}=-\frac{2}{3}$,
∴${a_n}=-2×{({\frac{1}{3}})^n}$.
∵${S_n}-{S_{n-1}}=({\sqrt{S_n}+\sqrt{{S_{n-1}}}})({\sqrt{S_n}-\sqrt{{S_{n-1}}}})$=$\sqrt{S_n}+\sqrt{{S_{n-1}}}$,
又bn>0,$\sqrt{S_n}>0$,∴$\sqrt{S_n}-\sqrt{{S_{n-1}}}=1$,数列$\left\{{\sqrt{S_n}}\right\}$构成一个公差为1的等差数列,
∵$\sqrt{{S_{10}}}=10$,∴S1=1,∴$\sqrt{S_n}=n$,${S_n}={n^2}$.
当n=1,b1=S1=1,
当n≥2,bn=Sn-Sn-1=2n-1(n=1也满足).
(II)${a_n}{b_n}=-2(2n-1)\frac{1}{3^n}$.
∴${T_n}=-2({\frac{1}{3}+\frac{3}{3^2}+\frac{5}{3^3}…\frac{2n-1}{3^n}})$$\frac{1}{3}{T_n}=-2({\frac{1}{3^2}+\frac{3}{3^3}+\frac{5}{3^4}…\frac{2n-1}{{{3^{n+1}}}}})$,
∴$\frac{2}{3}{T_n}=-2({\frac{1}{3}+\frac{2}{3^2}+\frac{2}{3^3}…+\frac{2}{3^n}-\frac{2n-1}{{{3^{n+1}}}}})$,
∴${T_n}=\frac{2n+2}{3^n}-2$.
点评 本题考查了“错位相减法”、等差数列与等比数列的通项公式及其求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com