分析 (1)由已知推导出BC⊥平面PAB,由此能证明BC⊥PB.
(2)法一:以B为原点,BC为x轴,BA为y轴,过B作垂直于平面ABC的直线为z轴,建立空间直角坐标系,利用向量法能求出二面角A-PC-B的大小.
法二:作PQ⊥直线AB于Q,则PO⊥平面ABC,作AE⊥PB于E,则AE⊥平面PBC,∠AFE就是二面角A-PC-B的平面角,由此能求出二面角A-PC-B的大小.
解答 证明:(1)∵平面PAB⊥平面ABC,且AB⊥BC,
∴BC⊥平面PAB,
∴BC⊥PB.(4分)
(2)解法一:如图,以B为原点,BC为x轴,BA为y轴,过B作垂直于平面ABC的直线为z轴,建立空间直角坐标系,![]()
则$A(0,\frac{1}{2},0),B(0,0,0),C(1,0,0)$,(6分)
∵平面PAB⊥平面ABC,∴点P在坐标平面yBz内,
∵PC=$\sqrt{3}$,BC=1,BC⊥PB,∴$PB=\sqrt{2}$,
作PQ垂直于直线AB于Q,
则$PQ=PB•sin∠PBA=\sqrt{2}•sin\frac{π}{4}=1$,QB=1,
∴P(0,1,1),$\overrightarrow{BP}=(0,1,1)$,$\overrightarrow{PC}=(1,-1,-1)$,$\overrightarrow{AC}=(1,-\frac{1}{2},0)$,(8分)
设平面PBC的法向量为$\overrightarrow{n_1}=(x,y,z)$,
则$\left\{\begin{array}{l}{n_1}•\overrightarrow{BP}=0\\{n_1}•\overrightarrow{PC}=0\end{array}\right.⇒\left\{\begin{array}{l}y+z=0\\ x-y-z=0\end{array}\right.$,取y=1,得$\overrightarrow{n_1}=(0,1,-1)$,
设平面PAC的法向量$\overrightarrow{{n}_{2}}$=(a.b.c),
$\overrightarrow{PA}$=(0,-$\frac{1}{2}$,-1),$\overrightarrow{PC}$=(1,-1,-1),
则$\left\{\begin{array}{l}{\overrightarrow{{n}_{2}}•\overrightarrow{PA}=-\frac{1}{2}b-c=0}\\{\overrightarrow{{n}_{2}}•\overrightarrow{PC}=a-b-c=0}\end{array}\right.$,取a=1,得$\overrightarrow{n_2}=(1,2,-1)$,(10分)
∴$cos<\overrightarrow{{n}_{1}},\overrightarrow{{n}_{2}}>$=$\frac{\overrightarrow{{n}_{1}}•\overrightarrow{{n}_{2}}}{|\overrightarrow{{n}_{1}}|•|\overrightarrow{{n}_{2}}|}$=$\frac{\sqrt{3}}{2}$,
由图知,二面角A-PC-B是锐二面角,
∴二面角A-PC-B的大小是$\frac{π}{6}$.(12分)
解:(2)解法二:
作PQ⊥直线AB于Q,则PQ⊥平面ABC,
∵$∠PBA=\frac{π}{4}$,$PB=\sqrt{2}$,PO=BO=1,
如图,作AE⊥PB于E,则AE⊥平面PBC,
∴AE⊥PC,取PC中点F,连接AF,EF,
∵AO=AB=$\frac{1}{2}$,PO=BC=1,
∴$AP=AC=\frac{{\sqrt{5}}}{2}$,∴AF⊥PC,∴PC⊥平面AEF,
∴PC⊥EF,∴∠AFE就是二面角A-PC-B的平面角.(8分)
$AF=\sqrt{A{P^2}-P{F^2}}=\frac{{\sqrt{2}}}{2}$,$AE=\frac{{\sqrt{2}}}{2}AB=\frac{{\sqrt{2}}}{4}$,
∴$sin∠AFE=\frac{AE}{AF}=\frac{1}{2}$,$∠AFE=\frac{π}{6}$,
∴二面角A-PC-B的大小是$\frac{π}{6}$.(12分)
点评 本题考查异面直线垂直的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com