精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
-x2+2x,-2≤x≤0
ln
1
x+1
0<x≤2
,若g(x)=|f(x)|-ax-a的图象与x轴有3个不同的交点,则实数a的取值范围是(  )
A、(0,
1
e
B、(0,
1
2e
C、[
ln3
3
1
e
D、[
ln3
3
1
2e
考点:分段函数的应用,函数的图象
专题:数形结合,函数的性质及应用
分析:由题意可得|f(x)|=a(x+1)有3个不同的实根,即有函数y=|f(x)|与y=a(x+1)的图象有3个交点,作出函数y=|f(x)|与y=a(x+1)的图象,考虑直线经过点(2,ln3)和y=ln(x+1)(0<x≤2)相切的情况,求得a,运用导数的几何意义,即可得到a,进而通过图象观察即可得到所求范围.
解答: 解:g(x)=|f(x)|-ax-a的图象与x轴有3个不同的交点,
则|f(x)|=a(x+1)有3个不同的实根,
即有函数y=|f(x)|与y=a(x+1)的图象有3个交点,
作出函数y=|f(x)|与y=a(x+1)的图象,
当直线经过点(2,ln3)两图象有3个交点,即有a=
ln3
3

当直线与y=ln(x+1)(0<x≤2)相切时,两图象有2个交点.
设切点为(m,n),则切线的斜率为
1
1+m
=a,
又n=a(m+1),n=ln(m+1).
解得a=
1
e
,m=e-1<2,
则图象与x轴有3个不同的交点,即有a的取值范围是[
ln3
3
1
e
).
故选C.
点评:本题考查分段函数的运用,主要考查分段函数的图象,以及函数方程的转化,运用数形结合的思想方法是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={3,4},集合B={1,2,3,4},则∁BA=(  )
A、∅
B、{3,4}
C、{1,2}
D、{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知五面体ABCDE,其中△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.
(Ⅰ)证明:AD⊥BC
(Ⅱ)若AB=4,BC=2,且二面角A-BD-C所成角θ的正切值是2,试求该几何体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,F2是抛物线C2:y2=2px(p>0)的焦点,P(
2
3
,m)是C1与C2在第一象限的交点,且|PF2|=
5
3

(Ⅰ)求C1与C2的方程;
(Ⅱ)过F2的直线交椭圆于M,N两点,T为直线x=4上任意一点,且T不在x轴上.
(i)求
F2M
F2N
的取值范围;
(ii)若OT恰好一部分线段MN,证明:TF2⊥MN.

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点为F,过点F作与x轴垂直的直线l交两条渐近线于M,N两点,且与双曲线在第二象限的交点为P,设O为坐标原点,若
OP
=m
OM
+n
ON
(m,n∈R),且mn=
1
8
,则双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若等边△ABC的边长为2
3
,平面内一点M满足:
CM
=
1
6
CB
+
2
3
CA
,则
MA
MB
=(  )
A、-1B、2C、-2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的函数f(x)满足f(x+2)=2f(x)-2,当x∈(0,2]时,f(x)=
x2-x,x∈(0,1)
1
x
,x∈[1,2]
,若x∈(0,4]时,t2-
7t
2
≤f(x)恒成立,则实数t的取值范围是(  )
A、[1,2]
B、[2,
5
2
]
C、[1,
5
2
]
D、[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意非负实数x,不等式(
x+1
-
x
)•
x
≤a恒成立,则实数a的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x|(x+4)
x+2
(x≠-2),下列关于函数g(x)=[f(x)]2-f(x)+a(其中a为常数)的叙述中:①?a>0,函数g(x)一定有零点;②当a=0时,函数g(x)有5个不同零点;③?a∈R,使得函数g(x)有4个不同零点;④函数g(x)有6个不同零点的充要条件是0<a<
1
4
.其中真命题的序号是(  )
A、①②③B、②③④
C、②③D、①③④

查看答案和解析>>

同步练习册答案