精英家教网 > 高中数学 > 题目详情

(本小题12分)
如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过C点。已知AB=3米,AD=2米。设(单位:米),若(单位:米),则当AM,AN的长度分别是多少时,花坛AMPN的面积最大?并求出最大面积。

解:.由于则AM=         
故SAMPN=AN•AM= …………3分
令y=,则y′=………… 6分
因为当时,y′< 0,所以函数y=上为单调递减函数,…… 9分
从而当x=3时y=取得最大值,即花坛AMPN的面积最大27平方米,
此时AN=3米,AM=9米  …………12分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
分别是实系数方程的一个根,且 ,求证:方程有仅有一根介于之间. 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知定义在上的函数在区间上的最大值是,最小值是.
(1)求函数的解析式;
(2)若时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数y=f(x)=x2-2x+4的定义域、值域都是闭区间[2,2b],求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义:已知函数在[m,n](m<n)上的最小值为t,若t≤m恒成立,则称函数在[m,n] (m<n)上具有“DK”性质.
(1)判断函数在[1,2]上是否具有“DK”性质,说明理由;
(2)若在[a,a+1]上具有“DK”性质,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(3)(本小题满分7分)选修4—5:不等式选讲
已知函数,不等式上恒成立.
(Ⅰ)求的取值范围;
(Ⅱ)记的最大值为,若正实数满足,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.已知,求函数的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)判断其奇偶性;
(2)指出该函数在区间(0,1)上的单调性并证明;
(3)利用(1)、(2)的结论,指出该函数在(-1,0)上的增减性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

证明函数在(-∞,0)上是增函数。

查看答案和解析>>

同步练习册答案