精英家教网 > 高中数学 > 题目详情

定义:已知函数在[m,n](m<n)上的最小值为t,若t≤m恒成立,则称函数在[m,n] (m<n)上具有“DK”性质.
(1)判断函数在[1,2]上是否具有“DK”性质,说明理由;
(2)若在[a,a+1]上具有“DK”性质,求a的取值范围.

解:(1)∵,x∈[1,2],
≤1,
∴函数在[1,2]上具有“DK”性质……………………………………6分
(2),x∈[a,a+1],其对称轴为
①当≤a时,即a≥0时,函
若函数具有“DK”性质,则有2≤a总成立,即a≥2.…………8分
②当a<<a+1,即-2<a<0时,
若函数具有“DK”性质,则有≤a总成立,
解得a∈.…………………………………………………………………10分
③当≥a+1,即a≤-2时,函数的最小值为
若函数具有“DK”性质,则有a+3≤a,解得a∈.………… 12分
综上所述,若在[a,a+1]上具有“DK”性质,则a≥2.………… 14分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数的两个不同的零点为
(Ⅰ)证明:
(Ⅱ)证明:
(Ⅲ)若满足,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数,函数是区间[1,1]上的减函数.
⑴求的最大值;
⑵若上恒成立,求t的取值范围;
⑶讨论关于的方程的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=x2+x-.
(1)若函数的定义域为[0,3],求f(x)的值域;
(2)若定义域为[a,a+1]时,f(x)的值域是[-,],求a的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知y=f(x)满足f(n-1)=f(n)-lg an-1(n≥2,n∈N)且f(1)=-lg a,是否存在实数α,β,使f(n)=(αn2+βn-1)·lg a对任何n∈N*都成立,证明你的结论

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)
如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过C点。已知AB=3米,AD=2米。设(单位:米),若(单位:米),则当AM,AN的长度分别是多少时,花坛AMPN的面积最大?并求出最大面积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)解不等式
(II)若不等式的解集为空集,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分分)
在股票市场上,投资者常参考   股价(每一股的价格)的某条平滑均线(记作)的变化情况来决定买入或卖出股票.股民老张在研究股票的走势图时,发现一只股票的均线近期走得很有特点:如果按如图所示的方式建立平面直角坐标系,则股价(元)和时间的关系在段可近似地用解析式)来描述,从点走到今天的点,是震荡筑底阶段,而今天出现了明显的筑底结束的标志,且点和点正好关于直线对称.老张预计这只股票未来的走势如图中虚线所示,这里段与段关于直线对称,段是股价延续段的趋势(规律)走到这波上升行情的最高点.
现在老张决定取点,点,点来确定解析式中的常数,并且已经求得.

(Ⅰ)请你帮老张算出,并回答股价什么时候见顶(即求点的横坐标).
(Ⅱ)老张如能在今天以点处的价格买入该股票股,到见顶处点的价格全部卖出,不计其它费用,这次操作他能赚多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

((本小题满分12分)
已知函数上的增函数,
(Ⅰ)若,求证:
(Ⅱ)判断(Ⅰ)中命题的逆命题是否成立,并用反证法证明你的结论.

查看答案和解析>>

同步练习册答案