精英家教网 > 高中数学 > 题目详情

((本小题满分12分)
已知函数上的增函数,
(Ⅰ)若,求证:
(Ⅱ)判断(Ⅰ)中命题的逆命题是否成立,并用反证法证明你的结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知二次函数满足.
(1)求的解析式;
(2)求上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义:已知函数在[m,n](m<n)上的最小值为t,若t≤m恒成立,则称函数在[m,n] (m<n)上具有“DK”性质.
(1)判断函数在[1,2]上是否具有“DK”性质,说明理由;
(2)若在[a,a+1]上具有“DK”性质,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.已知,求函数的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数的定义域为(0,1](为实数).
⑴当时,求函数的值域;
⑵若函数在定义域上是减函数,求的取值范围;
⑶求函数在x∈(0,1]上的最大值及最小值,并求出函数取最值时的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)判断其奇偶性;
(2)指出该函数在区间(0,1)上的单调性并证明;
(3)利用(1)、(2)的结论,指出该函数在(-1,0)上的增减性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数,当时,函数在x=2处取得最小值1。
(1)求函数的解析式;
(2)设k>0,解关于x的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数.
(1)当时,讨论的单调性;
(2)设时,若对任意,存在,使恒成立,求实数取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
设实, 设函数的最大值为
(1)设,求的取值范围,并把表示为的函数
(2)求

查看答案和解析>>

同步练习册答案