精英家教网 > 高中数学 > 题目详情
命题“?x∈[1,2],使x+
2
x
+a≥0”是真命题,则实数a的取值范围为
 
考点:特称命题
专题:简易逻辑
分析:根据特称命题的定义和性质,即可得到结论.
解答: 解:若“?x∈[1,2],使x+
2
x
+a≥0”是真命题,
则等价为“?x∈[1,2],使a≥-(x+
2
x
min
设g(x)=-(x+
2
x
)≤-2
2

而g(1)=-3,g(2)=-3,
∴-3≤g(x)≤-2
2

∴a≥-3,
故答案为:a≥-3
点评:本题主要考查特称命题的应用,注意存在性命题和任意性命题的区别.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)如图,四棱锥P-ABCD的底面ABCD是圆内接四边形(记此圆为W),PA⊥平面ABCD,PA=BD=2,AD=CD=
3

(1)当AC是圆W的直径时,求证:平面PBC⊥平面PAB;
(2)当BD是圆W的直径时,求二面角A-PD-C的余弦值;
(3)在(2)的条件下,判断棱PA上是否存在一点Q,使得BQ∥平面PCD?若存在,求出AQ的长,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x,(x≤1)
x2-2x+2,(x>1)
,若关于x的函数g(x)=f(x)-m有两个零点,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=3,点列(
an
an-1
)(其中n∈N*,且n>1)在直线x-y-
3
=0上,则数列{an}的通项公式an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式组
y-x≥0
y-kx-1≤0
x≥0
表示的平面区域的面积等于抛物线y=-x2+1与x轴围成的封闭区域的面积,则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

以平面直角坐标系的原点为极点,以x轴的正半轴为极轴,建立极坐标系,则圆x2+y2=2上的点到曲线ρcosθ+ρsinθ=4(ρ,θ∈R)的最短距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某地区为了绿化环境进行大面积植树造林,如图,在区域{(x,y)|x≥0,y≥0}内植树,第一棵树在点A1(0,1),第二棵树在点B1(1,1),第三棵树在点C1(1,0),第四棵树在点C2(2,0),接着按图中箭头方向每隔一个单位种一棵树,那么
(1)第n棵树所在点坐标是(3,1),则n=
 

(2)第2014棵树所在点的坐标是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2+cx+d(a≠0)的对称中心为M(x0,y0),记函数f(x)的导函数为f′(x),f′(x)的导函数为f″(x),则有f″(x0)=0.若函数f(x)=x3-3x2,则可求得:f(
1
4
)+f(
2
4
)+f(
3
4
)+f(
4
4
)+f(
5
4
)+f(
6
4
)+f(
7
4
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c为△ABC的三边,若b2+c2-a2=bc,则
b+c
a
的取值范围是(  )
A、(1,2]
B、(1,
3
]
C、[
3
,2]
D、(
3
,2]

查看答案和解析>>

同步练习册答案