精英家教网 > 高中数学 > 题目详情
9.某车间为了制作某个零件,需从一块扇形的钢板余料(如图1)中按照图2的方式裁剪一块矩形钢板ABCD,其中顶点B、C在半径ON上,顶点A在半径OM上,顶点D在$\widehat{NM}$上,∠MON=$\frac{π}{3}$,ON=OM=$\sqrt{3}$.设∠DON=θ,矩形ABCD的面积为S.
(1)用含θ的式子表示DC、OB的长;
(2)试将S表示为θ的函数
(3)求S的最大值.

分析 (1)根据锐角三角函数的定义即可表示出DC,OB;
(2)求出BC,代入面积公式得出S关于θ的函数;
(3)利用三角恒等变换化简S(θ),根据θ的范围和正弦函数的性质即可得出S的最大值.

解答 解:(1)DC=ODsin∠DOC=$\sqrt{3}$sinθ,
∵tan∠MON=$\frac{AB}{OB}$=$\frac{DC}{OB}$=$\sqrt{3}$,
∴OB=$\frac{DC}{\sqrt{3}}$=sinθ,
(2)OC=ODcosθ=$\sqrt{3}$cosθ,
∴BC=OC-OB=$\sqrt{3}$cosθ-sinθ,
∴S=BC•DC=$\sqrt{3}$sinθ($\sqrt{3}$cosθ-sinθ)=3sinθcosθ-$\sqrt{3}$sin2θ=$\frac{3}{2}$sin2θ+$\frac{\sqrt{3}}{2}$cos2θ-$\frac{\sqrt{3}}{3}$=$\sqrt{3}$sin(2θ+$\frac{π}{6}$)-$\frac{\sqrt{3}}{2}$.
(3)∵0$<θ<\frac{π}{3}$,∴$\frac{π}{6}$<2θ+$\frac{π}{6}$<$\frac{5π}{6}$.
∴当2θ+$\frac{π}{6}$=$\frac{π}{2}$即$θ=\frac{π}{6}$时,S取得最大值$\sqrt{3}-\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$.

点评 本题考查了三角恒等变换,正弦函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设随机变量ξ服从正态分布N(2,4)若P(ξ<a-3)=p(ξ>2a+1),则实数a的值是(  )
A.-4B.$\frac{4}{3}$C.2D.$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.△ABC中,A,B,C所对应的边分别为a,b,c,且边BC上的高为$\frac{a}{4}$,则$\frac{b}{c}+\frac{c}{b}$的取值范围为[2,$2\sqrt{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某公司于2015年底建成了一条生产线,自2016年1月份产品投产上市一年来,该公司的营销状况所反映出的每月获得的利润y(万元)与月份x之间的函数关系为:y=$\left\{\begin{array}{l}{26x-56(1≤x≤5,x∈N*)}\\{210-20x(5<x≤12,x∈N*)}\end{array}\right.$
(Ⅰ)2016年第几个月该公司的月利润最大?最大值是多少万元?
(Ⅱ)若公司前x个月的月平均利润(w=$\frac{前x个月的利润总和}{x}$)达到最大时,公司下个月就应采取改变营销模式,拓宽销售渠道等措施,以保持盈利水平,求w(万元)与x(月)之间的函数关系,并指出这家公司在2016年的第几个月就应采取措施.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=tan$\frac{π}{4}$x的最小正周期是(  )
A.4B.C.8D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于24小时的人数是(  )
A.76B.92C.108D.114

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.复数z=(2+3i)i的实部与虚部之和为(  )
A.1B.-1C.5D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在如图所示的茎叶图中,甲、乙两组数据的中位数的和是64.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在三棱柱 ABC-A1B1C1中,CC1丄底面ABC,AC=BC=2,AB=2$\sqrt{2}$,CC1=4,M是棱CC1上一点
(1)求证:BC⊥AM
(2)若二面角A-MB1-C的大小为$\frac{π}{4}$,求CM的长度.

查看答案和解析>>

同步练习册答案