精英家教网 > 高中数学 > 题目详情
8.已知向量$\overrightarrow{a}$=(cos15°,sin15°),$\overrightarrow{b}$=(cos75°,sin75°),则|a-2b|=$\sqrt{3}$.

分析 根据平面向量的坐标运算与数量积运算,计算即可.

解答 解:向量$\overrightarrow{a}$=(cos15°,sin15°),$\overrightarrow{b}$=(cos75°,sin75°),
∴${\overrightarrow{a}}^{2}$=cos215°+sin215°=1,|$\overrightarrow{a}$|=1;
${\overrightarrow{b}}^{2}$=cos275°+sin275°=1,|$\overrightarrow{b}$|=1;
∴$\overrightarrow{a}$•$\overrightarrow{b}$=cos15°cos75°+sin15°cos75°=cos60°=$\frac{1}{2}$;
${(\overrightarrow{a}-2\overrightarrow{b})}^{2}$=${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}$•$\overrightarrow{b}$+4${\overrightarrow{b}}^{2}$=1-4×$\frac{1}{2}$+4=3,
∴|a-2b|=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题考查了平面向量的坐标运算与数量积运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知曲线C的参数方程为$\left\{{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}}\right.$(θ为参数),在同一平面直角坐标系中,将曲线C上的点按坐标变换$\left\{{\begin{array}{l}{x'=\frac{1}{3}x}\\{y'=\frac{1}{2}y}\end{array}}\right.$得到曲线C'.
(1)以原点为极点、x轴正半轴为极轴建立极坐标系,求曲线C'的极坐标方程;
(2)若点A在曲线C'上,点B(3,0),当点A在曲线C'上运动时,求AB中点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列三角函数值的符号判断错误的是(  )
A.sin 165°>0B.cos 280°>0C.tan 170°>0D.tan 310°<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{\begin{array}{l}{f(x+2),x≤-1}\\{2x+2,-1<x<1}\\{{2}^{x}-4,x≥1}\end{array}\right.$,则f[f(-2016)]=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若tanα=-2,则sin2α+sinαcosα=$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)=$\left\{\begin{array}{l}{2x-1(x≥2)}\\{-{x}^{2}+3x(x<2)}\end{array}\right.$,则f(-4)+f(4)的值为(  )
A.-21B.-32C.-2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,已知双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为2,以双曲线C的实轴为直径的圆记为圆O,过点F2作圆O的切线,切点为P,则以F1,F2为焦点,过点P的椭圆T的离心率为(  )
A.$\frac{{\sqrt{5}-\sqrt{3}}}{2}$B.$\sqrt{5}-\sqrt{3}$C.$\frac{{\sqrt{7}-\sqrt{3}}}{4}$D.$\sqrt{7}-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=xlnx+et-a,若对任意的t∈[0,1],f(x)在(0,e)上总有唯一的零点,则a的取值范围是(  )
A.$[e-\frac{1}{e},e)$B.[1,e+1)C.[e,e+1)D.$(e-\frac{1}{e},e+1)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为了了解某小区2000户居民月用水量使用情况,通过随机抽样获得了100户居民的月用水量.如图是调查结果的频率分布直方图.
(1)做出样本数据的频率分布折线图;
(2)并根据频率直方图估计某小区2000户居民月用水量使用大于3的户数;
(3)利用频率分布直方图估计该样本的众数和中位数(保留到0.001)

查看答案和解析>>

同步练习册答案