精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足,且点在函数的图象上.

(1)求数列的通项公式;

(2)设,求数列的前项和.

【答案】(1);(2)

【解析】

试题分析:(1)代点,利用等差数列的定义判定该数列为等差数列,再利用等差数列的通项公式进行求解;(2)先利用(1)的结论求出数列的通项,利用等比数列的定义判定该数列为等比数列,再利用等比数列的前项和公式进行求解.

试题解析:(1)依题意得,得,即.………………1分

所以数列是公差为2的等差数列.………………2分

,得,解得.………………3分

所以………………4分

.………………5分

(2)因为,所以.………………6分

因为

所以是公比为9的等比数列.………………8分

所以………………10分

.………………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在一次“知识竞赛”活动中,有四道题,其中为难度相同的容易题, 为中档题, 为较难题,现甲、乙两位同学均需从四道题目中随机抽取一题作答.

(1)求甲、乙两位同学所选的题目难度相同的概率;

(2)求甲所选题目的难度大于乙所选题目的难度的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z=+(a25a-6)i(a∈R).试求实数a分别为什么值时,z分别为(1)实数?(2)虚数?(3)纯虚数?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)用定义证明:函数在区间上是减函数;

(2)若函数是偶函数,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足

(Ⅰ)若数列是常数列,求的值;

(Ⅱ)当时,求证:

(Ⅲ)求最大的正数,使得对一切整数恒成立,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是直线上的两个动点,线段的长为的中点.

(1)求动点的轨迹的方程;

(2)若过点(1,0)的直线与曲线交于不同两点

时,求直线的方程;

试问在轴上是否存在点,使恒为定值?若存在,求出点的坐标及定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,,动点满足.

(1)求动点的轨迹方程,并说明轨迹是什么曲线;

(2),点为动点的轨迹曲线上的任意一点,过点作圆:的切线,切点为.试探究平面内是否存在定点,使为定值,若存在,请求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时,若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.

(1)用每天生产的卫兵个数与骑兵个数表示每天的利润(元);

(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,PA垂直于矩形ABCD所在的平面,E、F分别是AB、PD的中点,∠ADP=45°.

(1)求证:AF∥平面PCE.

(2)求证:平面PCD⊥平面PCE.

(3)若AD=2,CD=3,求点F到平面PCE的距离.

查看答案和解析>>

同步练习册答案