分析 (1)先求出函数的导数,得出f′(x),从而判断函数的单调性和极值,
(2)由f′(x)=2x+$\frac{a}{x}$,且f(x)在[1,+∞)上是单调增函数,解不等式从而求出a的范围.
解答 解:(1)a=-1时:f(x)=x2-lnx,(x>0),
∴f′(x)=2x-$\frac{1}{x}$=$\frac{{2x}^{2}-1}{x}$,
令f′(x)>0,解得:x>$\frac{\sqrt{2}}{2}$,令f′(x)<0,解得:0<x<$\frac{\sqrt{2}}{2}$,
∴f(x)在(0,$\frac{\sqrt{2}}{2}$)递减,在($\frac{\sqrt{2}}{2}$,+∞)上单调递增,
∴f(x)的极小值是f($\frac{\sqrt{2}}{2}$)=$\frac{1}{2}$(1+ln2);
(2)∵f′(x)=2x+$\frac{a}{x}$,
若f(x)在[1,+∞)上是单调增函数,
则:f′(1)=2+a≥0,
∴a≥-2.
点评 本题考察了函数的单调性,极值问题,导数的应用问题,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 576种 | B. | 504种 | C. | 288种 | D. | 252种 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=sin(x+\frac{π}{6})$ | B. | $y=sin(x-\frac{π}{6})$ | C. | $y=sin(x-\frac{2π}{3})$ | D. | $y=sin(x+\frac{2π}{3})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com