精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
log2x,x>0
3x,x≤0
则方程f(x)=1解的个数为(  )
A、1B、2C、3D、4
考点:函数的值
专题:函数的性质及应用
分析:利用分段函数的性质求解.
解答: 解:∵函数f(x)=
log2x,x>0
3x,x≤0
,方程f(x)=1,
∴当x>0时,log2x=1,解得x=2;
当x≤0时,3x=1,解得x=0.
∴方程f(x)=1解的个数为2个.
故选:B.
点评:本题考查方程的解的个数的求法,是基础题,解题时要认真审题,注意分段函数的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}满足a3=5,a10=-9.
(1)求{an}的通项公式;
(2)求{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知PA⊥△ABC所在的平面,∠ABC=90°,E、F分别是PB、PC上的点,且AE⊥PB.
(1)求证:平面AEF⊥平面PBC;
(2)若AB=4,BC=3,PA=2,求二面角A-PC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

若点(4,y)是椭圆
x2
144
+
y2
80
=1上的点,则它到椭圆左焦点的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

动点P到点F(1,0)和直线x=-1的距离相等,直线l:kx-y-1=0与点P的轨迹C交于A,B两点
(1)求 P点的轨迹C的方程;
(2)当k变化时,求
OA
OB
最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,且PA⊥平面ABCD,PA=5,AB=4,AD=3,求直线PC与平面ABCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sinx-cosx+x+a.
(1)若0<a<1,证明:f(x)在区间(0,
π
4
)上有且只有一个零点;
(2)若对任意x∈(0,
π
2
),不等式f(x)>2x恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
a
ex
,其中a为实数,求g(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙O:x2+y2=9,点A(2,2),过A作两条互相垂直的弦CD和EF.
(1)求证:CD2+EF2为定值;
(2)求四边形CDEF的面积的最大值;
(3)求弦CD与EF的长之和的最大值;
(4)求△OEF的面积的最大值;
(5)点B(1,1),过B点作一条直线l交⊙O于K、H,求△OKH面积的最大值.

查看答案和解析>>

同步练习册答案