精英家教网 > 高中数学 > 题目详情
在矩形ABCD中,AB = 4,BC = 3,沿对角线AC把矩形折成二面角D-AC-B,并且D点在平面ABC内的射影落在AB上.若在四面体D-ABC内有一球,当球的体积最大时,球的半径是         .
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是(   )
A.平行B.垂直C.相交不垂直D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在直角梯形中,分别是的中点,现将沿折起,使平面平面(如图2),且所得到的四棱锥的正视图、侧视图、俯视图的面积总和为8.
⑴求点到平面的距离;
⑵求二面角的大小的夹角的余弦值;
⑶在线段上确定一点,使平面,并给出证明过程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.
如图,在底面边长为1,侧棱长为2的正四棱柱中,P是侧棱上的一点,.
(1)当时,求直线AP与平面BDD1B1所成角的度数;
(2)在线段上是否存在一个定点,使得对任意的m,⊥AP,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥A—BCDE中,底面BCDE为矩形,AB=AC,BC=2,CD=1,并且侧面底面BCDE。
(1)取CD的中点为F,AE的中点为G,证明:FG//面ABC;
(2)试在线段BC上确定点M,使得AEDM,并加以证明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面是矩形,,点的中点,点在边上移动。
1)点的中点时,试判断与平面的位置关系,并说明理由。
2)证明:无论点在边的何处,都有
3)当等于何值时,与平面所成角的大小为.(12分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分8分)如图,已知四棱锥
底面为直角梯形,,,,
,M是的中点。
(1)  证明:;
(2)  求异面直线所成的角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图所示的空间几何体,平面ACD⊥平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角为.且点E在平面ABC上的射影落在的平分线上。

(I)求证:DE//平面ABC;
(II)求二面角E—BC—A的余弦;
(III)求多面体ABCDE的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知α,β是平面,m,n是直线。下列命题中不正确的是 (  )          
A.若m∥n,m⊥α,则n⊥αB.若m∥α,α∩β=n,则m∥n
C.若m⊥α,m⊥β,则α∥βD.若m⊥α,,则α⊥β

查看答案和解析>>

同步练习册答案