精英家教网 > 高中数学 > 题目详情
z=x-y在
2x-y+1≥0
x-2y-1≤0
x+y≤1
的线性约束条件下,取得最大值的可行解为(  )
A、(0,1)
B、(-1,-1)
C、(1,0)
D、(
1
2
1
2
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用数形结合即可求出最优解.
解答: 解:作出不等式组对应的平面区域如图:
设z=x-y得y=x-z,
平移直线y=x-z,由图象可知当直线y=x-z经过点A时,
直线y=x-z的截距最小,此时z最大,
x+y=1
x-2y-1=0
解得
x=1
y=0
,即A(1,0),
∴最优解为(1,0),
故选:C.
点评:本题主要考查线性规划的应用,利用z的几何意义和最优解的定义,通过数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从1,2,3,4,5,6,7,8,9这9个数字中任取两个不同的数,分别为a、b,则能得到
 
条不同的直线ax+by+11=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中a1=3,a4=24,则a3+a4+a5=(  )
A、33B、72C、84D、189

查看答案和解析>>

科目:高中数学 来源: 题型:

设有无穷数列{an},且{nk}为正整数集N*的无限子集,n1<n2<…nk<…,则数列an1an2,…,ank,…称为数列{an}的一个子列,记为{ank}.下面关于子列的三个命题
①对任何正整数k,必有nk≥k;
②已知{an}为等差数列,则“{nk}为等差数列”是“{ank}为等差数列”的充分不必要条件;
③已知{an}为等比数列,则“{nk}为等差数列”是“{ank}为等比数列”的充分不必要条件.
真命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为{x|-3≤x≤8,且x≠5},值域为{y|-1≤y≤2,且y≠0}.下列关于函数y=f(x)的说法:①当x=-3时,y=-1;②将y=f(x)的图象补上点(5,0),得到的图象必定是一条连续的曲线;③y=f(x)是[-3,5)上的单调函数;④y=f(x)的图象与坐标轴只有一个交点.其中正确命题的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
m
=(bsin
x
2
,acos
x
2
),
n
=(cos
x
2
,-cos
x
2
),f(x)=
m
n
+a,其中a,b,x∈R.且满足f(
π
3
)=2,f′(0)=
3

(Ⅰ)求a,b的值;
(Ⅱ)若关于x的方程f(x)-log 
1
3
k=0在区间[0,π]上总有实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面内的动点P到两定点M(-2,0)、N(1,0)的距离之比为2:1.
(Ⅰ)求P点的轨迹方程;
(Ⅱ)过M点作直线,与P点的轨迹交于不同两点A、B,O为坐标原点,求△OAB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-ax-1(a∈R),其中e为自然对数的底数.
(Ⅰ)若f(x)≥0对任意x≥0恒成立,求a的取值范围;
(Ⅱ)求证:当n≥2,n∈N时,恒有1n+4n+7n+…+(3n-2)n
e
1
3
e-1
(3n)n

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙三位同学彼此独立地从A、B、C、D、E五所高校中,任选2所高校参加自主招生考试(并且只能选2所高校),但同学甲特别喜欢A高校,他除选A校外,在B、C、D、E中再随机选1所;同学乙和丙对5所高校没有偏爱,都在5所高校中随机选2所即可.
(Ⅰ)求甲同学未选中E高校且乙、丙都选中E高校的概率;
(Ⅱ)记X为甲、乙、丙三名同学中未参加E校自主招生考试的人数,求X的分布列及数学期望.

查看答案和解析>>

同步练习册答案