精英家教网 > 高中数学 > 题目详情
15.直三棱柱ABC-A1B1C1中,∠BCA=90°,M是AB的中点,BC=CA=CC1,则C1M与面BCC1B1所成的角的正弦值为(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{6}}{6}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{\sqrt{30}}{6}$

分析 过M作MD⊥BC,垂足为D,则D为BC的中点,DM⊥平面BCC1B1.设BC=CA=CC1=1,利用勾股定理求出DM,C1D,C1M,即可得出答案.

解答 解:过M作MD⊥BC,垂足为D,则D为BC的中点,连结DM,C1D,
∵平面ABC⊥平面BB1C1C,平面ABC∩平面BB1C1C=BC,DM?平面BCC1B1
∴DM⊥平面BCC1B1
∴∠DC1M为C1M与面BCC1B1所成的角.
设BC=CA=CC1=1,则DM=$\frac{1}{2}$AC=$\frac{1}{2}$,C1D=$\frac{\sqrt{5}}{2}$,
∴C1M=$\sqrt{D{M}^{2}+{C}_{1}{D}^{2}}$=$\frac{\sqrt{6}}{2}$.
∴sin∠DC1M=$\frac{DM}{{C}_{1}M}$=$\frac{\sqrt{6}}{6}$.
故选:B.

点评 本题考查了棱柱的结构特征,线面角的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.下列元素中属于集合A={(x,y)|x=$\frac{k}{3}$,y=$\frac{k}{4}$,k∈Z}的是(  )
A.$({\frac{1}{3},\frac{3}{4}})$B.$({\frac{2}{3},\frac{3}{4}})$C.(3,4)D.(4,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(2-a)lnx-2ax-$\frac{1}{x}$,
(1)试讨论f(x)的单调性;
(2)如果当x>1时,f(x)<-2a-1,求实数a的取值范围;
(3)记函数g(x)=f(x)+(a-4)lnx+3ax-$\frac{3a+1}{x}$,若g(x)在区间[1,4]上不单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.由物理中矢量运算及向量坐标表示与运算,我们知道:
(1)两点等分单位圆时有相应关系式为:sinα+sin(π+α)=0,cosα+cos(π+α)=0;
(2)四点等分单位圆时有相应关系式为:sinα+sin(α+$\frac{π}{2}$)+sin(α+π)+sin(α+$\frac{3π}{2}$)=0,cosα+cos(α+$\frac{π}{2}$)+cos(α+π)+cos(α+$\frac{3π}{2}$)=0.
由此我们可以推测,三点等分单位圆时的相应关系式为$sinα+sin(α+\frac{2π}{3})+sin(α+\frac{4π}{3})=0$,$cosα+cos(α+\frac{2π}{3})+cos(α+\frac{4π}{3})=0$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过点(1,0)且与直线x-y+2=0垂直的直线方程是(  )
A.x-y+1=0B.x-y-1=0C.x+y+1=0D.x+y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\frac{2}{3}$lnx-$\frac{1}{3}$x2+$\frac{1}{2}$,则函数f(x)的最大值为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知直线l:mx+y+3m-$\sqrt{3}$=0与圆x2+y2=12交于A,B两点,若AB=2$\sqrt{3}$,则实数m的值为-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图是一个输出一列数的算法流程图,则这列数的第三项是30.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=\left\{\begin{array}{l}{\sqrt{2}^x},x∈[0,2]\\ \frac{4}{x},x∈(2,4].\end{array}\right.$
(1)画出函数f(x)的大致图象;
(2)写出函数f(x)的最大值和单调递减区间.

查看答案和解析>>

同步练习册答案