精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=x+sin2x+1,若f(a)=2,则f(-a)的值为(  )
A.0B.-1C.-2D.3

分析 利用f(x)=x+sin2x+1,构造方程组,求f(-a).

解答 解:由f(a)=2,得a+sin2a+1=2,
∴f(-a)=-a+sin2a+1+1=-(a+sin2a)+1=-1+1=0.
故选:A.

点评 本题主要考查函数奇偶函数的应用.构造方程组是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.函数f(x)=x3-3x2-9x+2在[-2,2]最大值是(  )
A.-25B.7C.0D.-20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)已知$sinα+cosα=\frac{7}{13}$,α∈(0,π),求tanα的值;
(2)求$y=sin2x+2\sqrt{2}cos(\frac{π}{4}+x)+3$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2+alnx(a≠0,a∈R).
(1)若对任意实数x∈[1,+∞),使得f(x)≥(a+2)x恒成立,求实数a的取值范围;
(2)证明:对n∈N+,不等式$\frac{1}{ln(n+1)}+\frac{1}{ln(n+2)}+…+\frac{1}{ln(n+2016)}>\frac{2016}{n(n+2016)}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知过函数f(x)=x3+ax2+1的图象上一点B(1,b)的切线的斜率为-3.
(1)求a、b的值;
(2)求A的取值范围,使不等式f(x)≤A-1993对于x∈[-1,4]恒成立;
(3)令g(x)=-f(x)-3x2+tx+1.是否存在一个实数t,使得当x∈(0,1]时,g(x)有最大值1?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,弹簧上挂的小球做上下振动时,小球离开平衡位置的距离s(cm)随时间t(s)的变化曲线是一个三角函数的图象.
(1)经过多少时间,小球往复振动一次?
(2)求这条曲线的函数解析式;
(3)小球在开始振动时,离开平衡位置的位移是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知方程x2+y2+2x-6y+n=0表示圆C.
(1)写出此圆的圆心C的坐标和n的范围;
(2)若圆C与圆M:(x-3)2+y2=1相切,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知两条不重合的直线m,n和两个不重合的平面α,β有下列命题:
①若m⊥n,m⊥α,则n∥α;
②若m⊥α,n⊥β,则α∥β
③若m,n是两条异面直线,m?α,n?β,m∥β,n∥α,则α∥β;
④若α⊥β,α∩β=m,n?β,n⊥m,则n⊥α.
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=cos$\frac{πx}{4}$,集合A={2,3,4,5,6},现从集合A中任取两数m,n,且m≠n,则f(m)•f(n)≠0的概率为(  )
A.$\frac{3}{10}$B.$\frac{7}{15}$C.$\frac{3}{5}$D.$\frac{7}{10}$

查看答案和解析>>

同步练习册答案