精英家教网 > 高中数学 > 题目详情
f(x)=
1
log
1
2
(2x+1)
,则f(x)的定义域为(  )
A、x>-
1
2
B、x≠-
1
2
C、x>-
1
2
且x≠0
D、x>0
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:根据题意,函数的定义域应满足对数的真数大于0,且分母不等于0,列出不等式组,求出解集即可.
解答: 解:根据题意,得;
2x+1>0
2x+1≠1

解得x>-
1
2
,且x≠0;
∴f(x)的定义域为{x|x>-
1
2
,且x≠0}.
故选:C.
点评:本题考查了求函数的定义域的问题,解题时应列出使函数解析式有意义的不等式组,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A(3,0),B(0,4),若圆M:x2+y2=r2(r>0)上有且仅有两点C使△ABC面积等于
5
2
,则实数r的取值范围是(  )
A、(1,3)
B、(
7
5
12
5
C、(
12
5
17
5
D、(
7
5
17
5

查看答案和解析>>

科目:高中数学 来源: 题型:

“a<b”是“lna<lnb”的(  )
A、必要不充分条件
B、充分不必要条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

若二项式(2x+
a
x
8的展开式中的常数项为70,则实数a可以为(  )
A、2
B、
1
2
C、
2
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

变量x,y满足
x+y≥0
x-y+4≥0
x≤0
,则目标函数z=2x+y的最大值是(  )
A、8B、4C、2D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是2个红球,3个白球和5个黑球,每次只摸出一只小球,观察后均放回搅匀.在连续9次摸出的都是黑球的情况下,第10次摸出红球的概率是(  )
A、
1
29
B、
1
29
×
1
5
C、
1
5
D、以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在边长为2的菱形ABCD中,∠ABC=60°,对角线相交于点O,P是线段BD的一个三等分点,则
AP
AC
等于(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在坐标原点,以坐标轴为对称轴的双曲线C过点Q(2,
3
3
),且Q点在x轴上的射影恰为该双曲线的焦点F.
(1)求双曲线C的方程;
(2)过双曲线C的焦点F作与x轴不垂直的任意直线l交双曲线C于A,B两点,线段AB的垂直平分线交x轴于点M,问:
|AB|
|FM|
是否为定值?若为定值,请求出这个定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个几何体是由上下两部分构成的组合体,其三视图如图,若图中圆的半径为1,等腰三角形的腰长为
5
,则该几何体的体积为
 

查看答案和解析>>

同步练习册答案