| A. | $\frac{{1+x-(2n+1){x^n}+(2n-1){x^{n+1}}}}{{{{(1-x)}^2}}}$ | B. | $\frac{{1+x-(2n+1){x^n}+(2n-1){x^{n+1}}}}{1-x}$ | ||
| C. | $\frac{{1+x-(2n+1){x^n}+(2n-3){x^{n+1}}}}{{{{(1-x)}^2}}}$ | D. | $\frac{{1+x-(2n-1){x^n}+(2n+1){x^{n+1}}}}{{{{(1-x)}^2}}}$ |
分析 利用“错位相减法”与等比数列的求和公式即可得出.
解答 解:x≠1,0,设Sn=1+3x+5x 2+…+(2n-1)xn-1,
则xSn=x+3x2+…+(2n-3)xn-1+(2n-1)•xn,
相减可得:(1-x)Sn=1+2(x+x2+…+xn-1)-(2n-1)•xn,=2×$\frac{1-{x}^{n}}{1-x}$-1-(2n-1)•xn,
∴Sn=$\frac{1+x-(2n+1){x}^{n}+(2n-1){x}^{n+1}}{(1-x)^{2}}$.
故选:A.
点评 本题考查了“错位相减法”、等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 0 | C. | 1 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ②、③都不能为系统抽样 | B. | ②、④都不能为分层抽样 | ||
| C. | ①、④都可能为系统抽样 | D. | ①、③都可能为分层抽样 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com