精英家教网 > 高中数学 > 题目详情
6.已知x≠1,0,则1+3x+5x 2+…+(2n-1)xn-1=(  )
A.$\frac{{1+x-(2n+1){x^n}+(2n-1){x^{n+1}}}}{{{{(1-x)}^2}}}$B.$\frac{{1+x-(2n+1){x^n}+(2n-1){x^{n+1}}}}{1-x}$
C.$\frac{{1+x-(2n+1){x^n}+(2n-3){x^{n+1}}}}{{{{(1-x)}^2}}}$D.$\frac{{1+x-(2n-1){x^n}+(2n+1){x^{n+1}}}}{{{{(1-x)}^2}}}$

分析 利用“错位相减法”与等比数列的求和公式即可得出.

解答 解:x≠1,0,设Sn=1+3x+5x 2+…+(2n-1)xn-1
则xSn=x+3x2+…+(2n-3)xn-1+(2n-1)•xn
相减可得:(1-x)Sn=1+2(x+x2+…+xn-1)-(2n-1)•xn,=2×$\frac{1-{x}^{n}}{1-x}$-1-(2n-1)•xn
∴Sn=$\frac{1+x-(2n+1){x}^{n}+(2n-1){x}^{n+1}}{(1-x)^{2}}$.
故选:A.

点评 本题考查了“错位相减法”、等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数y=sinx在其定义域上的奇偶性是(  )
A.奇函数B.偶函数C.既奇且偶的函数D.非奇非偶的函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=a(x2-10x+25)+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6)
(1)确定a的值;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=${(\frac{2016}{2017})^x}-{x^{\frac{1}{2}}}$的零点的个数为(  )
A.2B.0C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{2-x}{x+1}$,用定义法证明函数f(x)在(1,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x+$\frac{a^2}{x}$,g(x)=x+lnx,其中a≥1.
(1)若x=2是函数f(x)的极值点,求h(x)=f(x)+g(x)在(1,h(1))处的切线方程;
(2)若对任意的x1,x2∈[1,e](e为自然对数的底数)都有f(x1)≥g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270;
关于上述样本的下列结论中,正确的是(  )
A.②、③都不能为系统抽样B.②、④都不能为分层抽样
C.①、④都可能为系统抽样D.①、③都可能为分层抽样

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设f(x)是定义在区间[-2,2]上的奇函数,命题p:f(x)在[0,2]上单调递减,命题q:f(1-m)≥f(m).若“¬p或q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过点(2,3)且与圆x2+y2=4相切的直线有几条(  )
A.0条B.1条C.2 条D.不确定

查看答案和解析>>

同步练习册答案