精英家教网 > 高中数学 > 题目详情
20.若A(-2,3),B(3,-2),C(0,m)三点共线,则m的值为(  )
A.1B.-1C.-5D.5

分析 根据经过两点的直线斜率的公式,分别计算出直线AB与直线AC的斜率,而A、B、C三点共线,故直线AB与直线AC的斜率相等,由此建立关于m的方程,解之即可得到实数m的值

解答 解:∵A(-2,3),B(3,-2),
∴直线AB的斜率k1=$\frac{-2-3}{3-(-2)}$=-1
同理可得:直线AC的斜率k2=$\frac{m-3}{0-(-2)}$,
∵A、B、C三点共线,
∴直线AB与直线AC的斜率相等,即k1=k2
得$\frac{m-3}{2}$=-1,解之得m=1,
故选:A.

点评 本题给出三点共线,求参数m的值,着重考查了利用直线斜率公式解决三点共线的知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某校羽毛球小组有男学生A,B,C和女学生X,Y,Z共6人,其所属年级如下:
一年级二年级三年级
男生ABC
女生XYZ
现从这6名学生中随机选出2人参加羽毛球比赛(每人被选到的可能性相同).
(1)共有几种不同的选法?用表中字母列举出来;
(2)设M为事件“选出的2人性别相同”,求事件M发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{{e}^{x}}{a}$-$\frac{a}{{e}^{x}}$(a>0)是定义在R上的奇函数.
(1)求a的值;
(2)设函数g(x)=1-$\frac{2a}{{2}^{x}+1}$,判断g(x)的单调性,并用定义证明你的结论;
(3)当x∈[0,ln4],求函数h(x)=e2x+meax的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若函数f(x)=ax3+bx2+cx在x=±1处有极值,且f(-1)=-1,求a,b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设数列{an}的前n项和为Sn,已知a1=1,Sn=$\frac{{({n+1})}}{2}{a_n}$,n∈N*
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)若数列{bn}满足:对任意的正整数n,都有a1b1+a2b2+…+anbn=(n-1)•2n+1,求数列$\left\{{\frac{S_n}{b_n}}\right\}$的最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.指数函数y=($\frac{b}{a}$)x的图象如图所示,则二次函数y=ax2+bx的顶点的横坐标的取值范围是(-$\frac{1}{2}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2acos2ωx+2sinωxcosωx.(ω>0)
(1)若f(x)的最大值为$\sqrt{2}-1$,求实数a的值.
(2)在条件(1)下,把f(x)图象上的点的横坐标变为原来的3倍,纵坐标不变,可得函数y=$\sqrt{2}$sin($\frac{2}{3}$x-$\frac{π}{4}$)-1的图象,求ω的值;
(3)若$ω=\frac{1}{2}$,图象关于直线x=$\frac{5}{3}$π对称,求函数y=cosx+asinx的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求1734,816,1343的最大公约数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.解不等式$\sqrt{|1-x|}$>kx.

查看答案和解析>>

同步练习册答案