精英家教网 > 高中数学 > 题目详情
9.求1734,816,1343的最大公约数.

分析 利用辗转相除法:1734与1343的最大公约数,同理可得816,1343的最大公约数.即可得出.

解答 解:利用辗转相除法:1734=1343+391,1343=391×3+170,391=170×2+51,170=51×3+17,51=17×3,∴1734与1343最大公约数是17.
同理可得816,1343的最大公约数是17.
综上可得:1734,816,1343的最大公约数是17.

点评 本题考查了利用辗转相除法求几个数的最大公约数,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知5件产品中有2件次品,其余为正品,现从5件产品中任取2件,求以下各事件发生的概率.
(1)恰有一件次品;
(2)至少有一件正品;
(3)至多有一件正品.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若A(-2,3),B(3,-2),C(0,m)三点共线,则m的值为(  )
A.1B.-1C.-5D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ax-$\frac{3}{2}$x2(x∈R),数列{an}的前n项和为Sn
(1)当a=2时,an+1=f(an),n∈N*,且S2=$\frac{9}{8}$,求a1、a2
(2)当a=1时,数列{bn}满足bn+1=f(bn),0<b1<$\frac{1}{2}$,证明bn<$\frac{1}{n+1}$,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.圆(x-3)2+(y+2)2=1与圆(x-7)2+(y-1)2=36的位置关系是(  )
A.外离B.外切C.相交D.内切

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果甲、乙在围棋比赛中,甲不输的概率为60%,甲获胜的概率为50%,则甲、乙和棋的概率为(  )
A.50%B.40%C.20%D.10%

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.命题p:对任意实数x,都有x2+2ax+a≥0恒成立;命题q:x-4y-a=0与抛物线x2=4y有交点,若“¬(p∨q)”为假命题,“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数f(x)=lnx-$\frac{1}{2}$ax2-2x存在递减区间,则实数a的最小整数值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,已知点A为圆O:x2+y2=9与圆C:(x-5)2+y2=16在第一象限内的交点.过A的直线1被圆O和圆C所截得的弦分别为NA,MA(M,N不重合).若|NA|=|MA|,则直线1的方程是7x-24y+45=0.

查看答案和解析>>

同步练习册答案