精英家教网 > 高中数学 > 题目详情
1.输入100个数,输出这100个数的和.请写出相应的程序框图.

分析 由题意该问题的模型中,参加累加的数共100个,循环变量i的初值为1且步长为1,当i≤100时执行循环体,不满足该条件时终止程序并输出s,由此可得应该采用当循环结构的程序加以解决.

解答 解:程序框图如下:

点评 本题着重考查了算法语句与程序框图的理解和设计程序框图解决实际问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.某公共汽车每5分钟发一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过3分钟的概率$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知a,b为异面直线,a⊥b,c与a成30°角,则c与b所成角的范围是[60°,90°].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知两个函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x≥0}\\{-{x}^{2},x<0}\end{array}\right.$,g(x)=$\left\{\begin{array}{l}{\frac{1}{x},x>0}\\{{x}^{2},x≤0}\end{array}\right.$.
(1)当x≤0时,求f(g(x))的解析式;
(2)当x<0时,求g(f(x))的解析式;
(3)解不等式g(x)>2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=-2x2-kx+8在区间[1,2]上是单调函数,则k的取值范围是(  )
A.(-∞,-8]B.[-8,-4]C.(-∞,4]∪[8,+∞)D.(-∞,-8]∪[-4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.计算下列极限:
(1)$\underset{lim}{n→∞}$($\sqrt{n+1}$-$\sqrt{n}$);
(2)$\underset{lim}{n→∞}$$\sqrt{n}$($\sqrt{n+1}$-$\sqrt{n}$);
(3)$\underset{lim}{n→∞}$$\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+2}-\sqrt{n+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合M={x|y=$\frac{1}{\sqrt{4-2x}}$+1},集合N={y|y=-x2+4x-2},则集合M与集合N的关系为(  )
A.M?NB.M?NC.M=ND.M?N

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,在正方形ABCD中,AB=2,点E、F分别在边AB、DC上,M为AD的中点,且$\overrightarrow{ME}•\overrightarrow{MF}$=0,则△MEF的面积的取值范围为(  )
A.$[{1,\frac{5}{4}}]$B.[1,2]C.$[{\frac{1}{2},\frac{5}{4}}]$D.$[{\frac{1}{2},\frac{3}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a、b为正实数,且a+2b=3ab,若a+b-c≥0对于满足条件的a,b恒成立,则c的取值范围为(  )
A.(-∞,$1+\frac{{2\sqrt{2}}}{3}$]B.$(-∞,\frac{3}{2}+\sqrt{2}]$C.(-∞,6]D.(-∞,$3+2\sqrt{2}$]

查看答案和解析>>

同步练习册答案