精英家教网 > 高中数学 > 题目详情
3.已知$\overrightarrow{AB}$+$\overrightarrow{AD}$=$\overrightarrow{AC}$,且$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{BD}$=$\overrightarrow{b}$,分别用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{AB}$、$\overrightarrow{AD}$.

分析 由条件即可得到$\overrightarrow{AD}-\overrightarrow{AB}=\overrightarrow{b}①$,$\overrightarrow{AD}+\overrightarrow{AB}=\overrightarrow{a}$②,这样联立①②即可解出$\overrightarrow{AD},\overrightarrow{AB}$,即用$\overrightarrow{a},\overrightarrow{b}$表示出$\overrightarrow{AB},\overrightarrow{AD}$.

解答 解:根据条件,$\left\{\begin{array}{l}{\overrightarrow{BD}=\overrightarrow{AD}-\overrightarrow{AB}=\overrightarrow{b}}&{①}\\{\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{a}}&{②}\end{array}\right.$;
∴①+②得,2$\overrightarrow{AD}=\overrightarrow{a}+\overrightarrow{b}$;
∴$\overrightarrow{AD}=\frac{\overrightarrow{a}+\overrightarrow{b}}{2}$;
∴$\overrightarrow{AB}=\overrightarrow{a}-\overrightarrow{AD}=\overrightarrow{a}-\frac{\overrightarrow{a}+\overrightarrow{b}}{2}=\frac{\overrightarrow{a}-\overrightarrow{b}}{2}$.

点评 考查向量减法的几何意义,二元一次方程组的解法,以及向量的数乘运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知P1,P2,…,Pn是曲线C:y=$\frac{1}{x}$(x>0)上一系列点,且满足以下条件,过P1作直线l:y=1的垂线.垂足为A1,作线段P1A1的中垂线交曲线C于P2,再过P2作直线l的垂线,垂足为A2,作线段P2A2的中垂线交曲线C于P3,依此类推,设Pn(an,$\frac{1}{{a}_{n}}$),n=1,2,3…,且a1=$\frac{2}{3}$.
(1)求{an}的通项公式;
(2)求证:an≥-(1+$\frac{1}{{2}^{n}}-\frac{1}{x}$)x2+x对任意x∈R恒成立;
(3)记数列{an}的前n项和为Sn,求证:Sn>$\frac{{n}^{2}}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求符合下列条件的圆的方程:
(1)圆心在点(0,2)且与直线x-2y+1=0相切;
(2)圆心在x轴上,且过点(3,$\sqrt{3}$)、(0,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设向量$\overrightarrow{α}$=(sinα,sinα).$\overrightarrow{b}$=(cosα,sinα),α∈[$\frac{π}{2}$,π]且|$\overrightarrow{α}$|=|$\overrightarrow{b}$|.
(I)求α的值;
(II)将$\overrightarrow{b}$顺时针方向旋转$\frac{π}{4}$得到$\overrightarrow{{e}_{1}}$,将$\overrightarrow{α}$逆时针方向旋转$\frac{π}{12}$得到$\overrightarrow{{e}_{2}}$,非零向量$\overrightarrow{c}$=x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$,求$\frac{|x|}{|\overrightarrow{c}|}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.y=$\frac{cos2x+sin2x}{cos2x-sin2x}$的最小正周期为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.根据下列条件,求角α的指定的三角函数值:
(1)已知sin$α=-\frac{\sqrt{3}}{2}$,且α是第三象限角,求cosα和tanα;
(2)已知tanα=-3,且α是第二象限角,求sinα和cosα;
(3)已知cos$α=\frac{12}{13}$,且α是第四象限角,求sinα和tanα;
(4)已知sin$α=-\frac{1}{2}$,α∈R,求cosα和tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知y=f(x)为定义在R上奇函数,并且当x∈(0,+∞)时,f(x)=2lnx-mx+$\frac{1}{2}$x2
(1)求f(x)的解析式;
(2)若f(x)在[1,2]上单调递减,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=sin2x在[-π,π]内满足$\frac{{f({x_1})}}{x_1}=\frac{{f({x_2})}}{x_2}=…\frac{{f({x_n})}}{x_n}$的n的最大值是4.

查看答案和解析>>

同步练习册答案