精英家教网 > 高中数学 > 题目详情
18.设向量$\overrightarrow{α}$=(sinα,sinα).$\overrightarrow{b}$=(cosα,sinα),α∈[$\frac{π}{2}$,π]且|$\overrightarrow{α}$|=|$\overrightarrow{b}$|.
(I)求α的值;
(II)将$\overrightarrow{b}$顺时针方向旋转$\frac{π}{4}$得到$\overrightarrow{{e}_{1}}$,将$\overrightarrow{α}$逆时针方向旋转$\frac{π}{12}$得到$\overrightarrow{{e}_{2}}$,非零向量$\overrightarrow{c}$=x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$,求$\frac{|x|}{|\overrightarrow{c}|}$的最大值.

分析 (1)根据|$\overrightarrow{α}$|=|$\overrightarrow{b}$|列出方程解出α;
(2)求出$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的坐标,得出|$\overrightarrow{c}$|的坐标,求出$\frac{|x|}{|\overrightarrow{c}|}$的平方,根据二次函数的性质求出$\frac{|x|}{|\overrightarrow{c}|}$的最大值.

解答 解:(I)∵|$\overrightarrow{α}$|=|$\overrightarrow{b}$|,∴2sin2α=cos2α+sin2α=1,
∴sin2α=$\frac{1}{2}$,∵α∈[$\frac{π}{2}$,π],
∴α=$\frac{3π}{4}$.
(II)$\overrightarrow{a}$=(cos$\frac{π}{4}$,sin$\frac{π}{4}$),$\overrightarrow{b}$=(cos$\frac{3π}{4}$,sin$\frac{3π}{4}$).
∴$\overrightarrow{{e}_{1}}$=(0,1),$\overrightarrow{{e}_{2}}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$).
∴$\overrightarrow{c}=(\frac{y}{2},x+\frac{\sqrt{3}y}{2})$.
∴|$\overrightarrow{c}$|=$\sqrt{(\frac{y}{2})^{2}+(x+\frac{\sqrt{3}y}{2})^{2}}$=$\sqrt{{x}^{2}+{y}^{2}+\sqrt{3}xy}$.
∴$\frac{|x{|}^{2}}{|\overrightarrow{c}{|}^{2}}$=$\frac{{x}^{2}}{{x}^{2}+{y}^{2}+\sqrt{3}xy}$=$\frac{1}{1+(\frac{y}{x})^{2}+\frac{\sqrt{3}y}{x}}$=$\frac{1}{[(\frac{y}{x})+\frac{\sqrt{3}}{2}]^{2}+\frac{1}{4}}$.
∴当$\frac{y}{x}=-\frac{\sqrt{3}}{2}$时,$\frac{|x{|}^{2}}{|\overrightarrow{c}{|}^{2}}$取得最大值4.
∴$\frac{|x|}{|\overrightarrow{c}|}$的最大值是2.

点评 本题考查了平面向量的数量积运算,向量的坐标运算,二次函数的最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.在边长为1的正方体ABCD-A′B′C′D′中,E,F,G分别在BB′,BC,BA上,并且满足$\overrightarrow{BE}=\frac{3}{4}\overrightarrow{BB'}$,$\overrightarrow{BF}=\frac{1}{2}\overrightarrow{BC}$,$\overrightarrow{BG}=\frac{1}{2}\overrightarrow{BA}$.若平面AB′F,平面ACE,平面B′CG交于一点O,$\overrightarrow{BO}=x\overrightarrow{BG}+y\overrightarrow{BF}+z\overrightarrow{BE}$,则x+y+z=$\frac{4}{3}$,$|\overrightarrow{OD}|$=$\frac{\sqrt{59}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设随机变量X~(2,σ2),若P(4-a<X<a)=0.8(a>2),则P(X>a)的值为0.1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,4sinA=5sinB,cos(A-B)=$\frac{31}{32}$,则$\frac{a-b}{a+b}$=$\frac{1}{9}$,cosC=$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知x>0,y>0,且x=4xy-2y,则3x+2y的最小值为2+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\overrightarrow{AB}$+$\overrightarrow{AD}$=$\overrightarrow{AC}$,且$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{BD}$=$\overrightarrow{b}$,分别用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{AB}$、$\overrightarrow{AD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.解下列方程或不等式:
(1)${A}_{2x+1}^{4}$=140${A}_{x}^{3}$;
(2)${A}_{8}^{x}$<6${A}_{8}^{x-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直线l过点A(3,4),且与点B(1,6)的距离最远,则直线l的方程为(  )
A.x-y+1=0B.x+y+1=0C.x+y-7=0D.x-y-7=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知双曲线C的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),离心率e=$\frac{\sqrt{13}}{2}$.
(1)求双曲线C的渐近线方程;
(2)若A,B分别是两条渐近线上的点,AB是位于第一、四象限间的动弦,△A0B的面积为定值$\frac{27}{4}$,且双曲线C经过AB的一个三等分点P,如图,试求双曲线C的方程.

查看答案和解析>>

同步练习册答案