精英家教网 > 高中数学 > 题目详情
10.解下列方程或不等式:
(1)${A}_{2x+1}^{4}$=140${A}_{x}^{3}$;
(2)${A}_{8}^{x}$<6${A}_{8}^{x-2}$.

分析 (1)根据排列数公式,化简${A}_{2x+1}^{4}$=140${A}_{x}^{3}$,解方程即可;
(2)根据排列数公式,化简不等式${A}_{8}^{x}$<6${A}_{8}^{x-2}$,解不等式即可.

解答 解:(1)∵${A}_{2x+1}^{4}$=140${A}_{x}^{3}$,
∴(2x+1)•2x•(2x-1)•(2x-2)=140•x•(x-1)•(x-2),
化简得(2x+1)(2x-1)=35(x-2),
即4x2-35x+69=0,
解得x=3或x=$\frac{23}{4}$(不合题意,舍去),
∴该方程的解为x=3;
(2)∵${A}_{8}^{x}$<6${A}_{8}^{x-2}$,
∴$\frac{8!}{(8-x)!}$<6×$\frac{8!}{(8-x+2)!}$,
即1<$\frac{6}{(10-x)(9-x)}$,
化简得x2-19x+84<0,
解得7<x<12,
又x≤8,且x∈N*
∴x=8;
故原不等式的解集为{8}.

点评 本题考查了排列数公式的应用问题,也考查了解方程与不等式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知集合A={x|0<x<3},B={x|x-2>0},则集合A∩B=(  )
A.{x|0<x<2}B.{x|2<x<3}C.{x|x>2}D.{x|x>0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设集合A={1,2,4,5,6},B={4,5,6,7},求满足S⊆A.且S∩B≠∅的集合的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设向量$\overrightarrow{α}$=(sinα,sinα).$\overrightarrow{b}$=(cosα,sinα),α∈[$\frac{π}{2}$,π]且|$\overrightarrow{α}$|=|$\overrightarrow{b}$|.
(I)求α的值;
(II)将$\overrightarrow{b}$顺时针方向旋转$\frac{π}{4}$得到$\overrightarrow{{e}_{1}}$,将$\overrightarrow{α}$逆时针方向旋转$\frac{π}{12}$得到$\overrightarrow{{e}_{2}}$,非零向量$\overrightarrow{c}$=x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$,求$\frac{|x|}{|\overrightarrow{c}|}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$\frac{sinα-cosα}{sinα+cosα}$=$\frac{1}{3}$,则cos4($\frac{π}{3}$+α)-cos4($\frac{π}{6}$-α)的值为(  )
A.$\frac{3+4\sqrt{3}}{10}$B.$\frac{4+3\sqrt{3}}{10}$C.$\frac{3-4\sqrt{3}}{10}$D.$\frac{4-3\sqrt{3}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.根据下列条件,求角α的指定的三角函数值:
(1)已知sin$α=-\frac{\sqrt{3}}{2}$,且α是第三象限角,求cosα和tanα;
(2)已知tanα=-3,且α是第二象限角,求sinα和cosα;
(3)已知cos$α=\frac{12}{13}$,且α是第四象限角,求sinα和tanα;
(4)已知sin$α=-\frac{1}{2}$,α∈R,求cosα和tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将函数f(x)=$\frac{1}{2}$sin2xsin$\frac{π}{3}$+cos2xcos$\frac{π}{3}$$-\frac{1}{2}$sin($\frac{π}{2}+\frac{π}{3}$)的图象上各点的横坐标缩短到原来的$\frac{1}{2}$,纵坐标不变,得到函数y=g(x)的图象,则函数g(x)在[0,$\frac{π}{4}$]上的最大值和最小值分别为(  )
A.$\frac{1}{2}$,$-\frac{1}{2}$B.$\frac{1}{4}$,$-\frac{1}{4}$C.$\frac{1}{2}$,-$\frac{1}{4}$D.$\frac{1}{4}$,-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.sin240°+sin220°+sin40°•sin20°的值为(  )
A.$\frac{3}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设变量x,y满足约束条件$\left\{{\begin{array}{l}{2x-y-2≤0}\\{x-2y+2≥0}\\{x+y-1≥0}\end{array}}\right.$,则z=x-3y的取值范围是[-4,1].

查看答案和解析>>

同步练习册答案