精英家教网 > 高中数学 > 题目详情
2.有一幅图画挂在墙上,它的下方在观察者眼睛上方a米处,它的上方在观察者眼睛上方b米处.观察者离此画$\sqrt{ab}$米才能使得视角最大.

分析 作出图象,由题意可得OA=b,OB=a,设OM=x,∠OMA=α,∠OMB=β,由三角函数的定义可得tanα=$\frac{b}{x}$,tanβ=$\frac{a}{x}$,再由两角差的正切公式可得tan(β-α)=$\frac{tanβ-tanα}{1+tanβtanα}$=$\frac{\frac{a}{x}-\frac{b}{x}}{1+\frac{ab}{{x}^{2}}}$=$\frac{a-b}{x+\frac{ab}{x}}$,由基本不等式可得.

解答 解:如图所示观察者在M处,A、B为画的下、上边缘,
由题意可得OA=b,OB=a,设OM=x,∠OMA=α,∠OMB=β,
则分别在直角三角形中可得tanα=$\frac{b}{x}$,tanβ=$\frac{a}{x}$,
∴tan(β-α)=$\frac{tanβ-tanα}{1+tanβtanα}$
=$\frac{\frac{a}{x}-\frac{b}{x}}{1+\frac{ab}{{x}^{2}}}$=$\frac{a-b}{x+\frac{ab}{x}}$≤$\frac{a-b}{2\sqrt{ab}}$
当且仅当x=$\frac{ab}{x}$即x=$\sqrt{ab}$时取等号,
由∵y=tanx在(0,$\frac{π}{2}$)为增函数,
∴当x=$\sqrt{ab}$时,视角最大.
即观察者离此画$\sqrt{ab}$米时,才能使得视角最大.
故答案为:$\sqrt{ab}$

点评 本题考查基本不等式求最值的实际应用,涉及正切函数的单调性和两角差的正切公式,属中档题.考查学生的转化能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知f(x)是定义在R上的奇函数,当x∈[0,+∞)时,有xf′(x)>f(-x)恒成立,则满足3f(3)>(2x-1)f(2x-1)的实数x的取值范围是(  )
A.(-1,$\frac{1}{2}$)B.(-1,2)C.($\frac{1}{2}$,2)D.(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设点P(1,-1)到直线(m+1)x+(2m-1)y-1-4m=0(m∈R)的距离为d,则d的取值范围为(  )
A.[0,1)B.[0,1]C.[0,$\sqrt{5}$)D.[0,$\sqrt{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,D、C是以AB为直径的⊙O上被AB分在同一侧上两点,$\widehat{DC}$=$\widehat{CB}$,对角线AC交BD于点E,AE=2EC=2.
(1)求证四边形ABCD为梯形;
(2)求梯形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在直角坐标系xOy中,设倾斜角为α的直线:$\left\{\begin{array}{l}{x=2+tcosα}\\{y=\sqrt{3}+tsinα}\end{array}\right.$,(t为参数)与曲线C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)相交于不同的两点A,B.以O为极点,Ox正半轴为极轴,两坐标系取相同的单位长度,建立极坐标系.
(1)求曲线C的极坐标方程;
(2)若α=$\frac{π}{3}$,求线段|AB|的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设m是正整数,数列{an}的前n项和Sn满足式子Sn+Sm=Sn+m,且a1=2,求a100

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知a+b=(lg2)3+(lg5)3+3lg2•lg5,则3ab+a3+b3=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.有下列命题
①f(x)=log${\;}_{\frac{1}{2}}$(x2-4)的单调减区间是(2,+∞);
②若函数f(x)满足f(x)=f(2-x),则f(x)图象关于直线x=1对称;
③函数f'(x)=lg(x+1)+lg(x-1)是偶函数;
④设f'(x)是函数f(x)的导函数,若f'(x0)=0,则x0是f(x)的极值点.
其中所有正确命题的序号是.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.数列{an}的前n项和为Sn,若an=$\frac{2}{{n({n+1})}}$,则S100等于(  )
A.$\frac{100}{101}$B.$\frac{200}{101}$C.2D.$\frac{198}{101}$

查看答案和解析>>

同步练习册答案