精英家教网 > 高中数学 > 题目详情
已知点F1、F2为双曲线C:x2-
y2
b2
=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.
(1)求双曲线C的方程;
(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求
PP1
PP2
的值.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)设F2,M的坐标分别为(
1+b2
,0),(
1+b2
y0)
,求出|MF2|,Rt△MF2F1中,∠MF1F2=30°,求出|MF1|,利用双曲线的定义,即可求双曲线C的方程;
(2)求出两条渐近线方程,可得点Q到两条渐近线的距离,设两渐近线的夹角为θ,可得cosθ=
1
3
,利用向量的数量积公式,即可求
PP1
PP2
的值.
解答: 解:(1)设F2,M的坐标分别为(
1+b2
,0),(
1+b2
y0)

因为点M在双曲线C上,所以1+b2-
y02
b2
=1
,即y0b2,所以|MF2|=b2
在Rt△MF2F1中,∠MF1F2=30°,|MF2|=b2,所以|MF1|=2b2…(3分)
由双曲线的定义可知:|MF1|-|MF2|=b2=2
故双曲线C的方程为:x2-
y2
2
=1
…(6分)
(2)由条件可知:两条渐近线分别为l1
2
x-y=0;l2
2
x+y=0
…(8分)
设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,
则点Q到两条渐近线的距离分别为|PP1|=
|
2
x0-y0|
3
,|PP2|=
|
2
x0+y0|
3
,…(11分)
因为Q(x0,y0)在双曲线C:x2-
y2
2
=1
上,
所以2x02-y02=2,又cosθ=
1
3

所以
PP1
PP2
=
|
2
x0-y0|
3
|
2
x0+y0|
3
cosθ=
|2x02-y02|
3
1
3
=
2
9
…(14分)
点评:本题考查双曲线的标准方程,考查双曲线的几何性质,考查向量的数量积公式,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若△ABC三边长a,b,c满足等式(a+b-c)(a+b+c)=ab,则角C的大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某程序框图如图所示,若程序运行后,输出S的结果是(  )
A、246B、286
C、329D、375

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+a(x+lnx),x>0,a∈R是常数.
(1)?a∈R,试证明函数y=f(x)的图象在点(1,f(1))处的切线经过定点;
(2)若函数y=f(x)图象上的点都在第一象限,试求常数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3+x2+ax

(1)若f(x)在区间[1,+∞)单调递增,求a的最小值;
(2)若g(x)=
1
ex
,对?x1∈[
1
2
,2],?x2∈[
1
2
,2]
,使f′(x1)≤g(x2)成立,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知
AB
AC
=9,
AB
BC
=-16.求:
(1)AB的值;
(2)
sin(A-B)
sinC
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点的椭圆C的离心率e=
5
3
,一条准线方程为
5
x-9=0,
(1)求椭圆C的标准方程;
(2)若以k(k>0)为斜率的直线l与椭圆C相交于两个不同的点M,N,且线段MN的垂直平分线与两坐标轴围成的三角形的面积为
25
74
,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α是第三象限角,且tanα=
1
2
,则cosα=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)同时具有以下两个性质:①f(x)是偶函数,②对任意实数x,都有f(
π
4
+x)=f(
π
4
-x),则f(x)的解析式可以是(  )
A、f(x)=cosx
B、f(x)=cos(2x+
π
2
C、f(x)=sin(4x+
π
2
D、f(x)=cos6x

查看答案和解析>>

同步练习册答案