精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax+ ,其中函数f(x)的图象在点(1,f(1))处的切线方程为y=x﹣1.
(1)若a= ,求函数f(x)的解析式;
(2)若f(x)≥g(x)在[1,+∞)上恒成立,求实数a的取值范围;
(3)证明:1+

【答案】
(1)解:f(x)的导数为f′(x)=a﹣

则有 ,解得

由a= ,得b=﹣ ,c=0,

故f(x)= x﹣


(2)解:由(1)知f(x)=ax+ +1﹣2a,

令φ(x)=f(x)﹣g(x)=ax+ +1﹣2a﹣lnx,x∈[1,+∞),

则φ(1)=0,φ′(x)=a﹣ =

( i)当0<a< 时, >1.

若1<x< ,则φ′(x)<0,φ(x)是减函数,

所以φ(x)<φ(1)=0,即f(x)<g(x).

故f(x)≥g(x)在[1,+∞)上不恒成立.

(ii)当a≥ 时, ≤1.

若x>1,则φ'(x)>0,φ(x)是增函数,

所以φ(x)>φ(1)=0,即f(x)>g(x),

故当x≥1时,f(x)≥g(x).

综上所述,所求a的取值范围为[ ,+∞).


(3)证明:由(2)知当a≥ 时,有f(x)≥g(x)(x≥1).

令a= ,有f(x)= (x﹣ )≥lnx

且当x>1时, (x﹣ )>lnx.

令x= ,有ln )= [(1+ )﹣(1﹣ )]

∴ln(k+1)﹣lnk< + ),k=1,2,3,…,n,

将上述n个不等式依次相加,得ln(n+1)< +( + +…+ )+

整理得1+ + +…+ >ln(n+1)+


【解析】(1)通过函数的导数,利用导数值就是切线的斜率,切点在切线上,求出b,c,从而求出函数的解析式即可;(2)利用f(x)≥lnx,构造g(x)=f(x)﹣lnx,问题转化为g(x)=f(x)﹣lnx≥0在[1,+∞)上恒成立,利用导数求出函数在[1,+∞)上的最小值大于0,求a的取值范围;(3)由(1)可知a≥ 时,f(x)≥lnx在[1,+∞)上恒成立,则当a= 时, (x﹣ )≥lnx在[1,+∞)上恒成立,对不等式的左侧每一项裂项,然后求和,即可推出要证结论.
【考点精析】本题主要考查了利用导数研究函数的单调性和函数的最大(小)值与导数的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=k(x﹣1)ex+x2 . (Ⅰ)当时k=﹣ ,求函数f(x)在点(1,1)处的切线方程;
(Ⅱ)若在y轴的左侧,函数g(x)=x2+(k+2)x的图象恒在f(x)的导函数f′(x)图象的上方,求k的取值范围;
(Ⅲ)当k≤﹣l时,求函数f(x)在[k,1]上的最小值m.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆经过 两点,且圆心在直线上.

(1)求圆的标准方程;

(2)过圆内一点作两条相互垂直的弦,当时,求四边形的面积.

(3)设直线与圆相交于两点, ,且的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用红、黄、蓝三种颜色给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则不同的涂色方案的种数是(
A.12
B.24
C.30
D.36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某火锅店为了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y(单位:千元)与该地当日最低气温x(单位:℃)的数据,如表:

x

2

8

9

11

5

y

12

8

8

7

10


(1)求y关于x的回归方程
(2)判定y与x之间是正相关还是负相关;若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额. (附:回归方程 中, = = = .)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3﹣4x+4,
(1)求f(x)的单调区间;
(2)求f(x)在[0,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l经过直线2xy50x2y0的交点P.

(1)A(50)到直线l的距离为3,求直线l的方程;

(2)求点A(50)到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCDA1B1C1D1中,下列说法正确的是____ (填序号).

(1)直线AC1在平面CC1B1B内.

(2)设正方形ABCDA1B1C1D1的中心分别为OO1,则平面AA1C1C与平面BB1D1D的交线为OO1.

(3)由AC1B1确定的平面是ADC1B1.

(4)由AC1B1确定的平面与由AC1D确定的平面是同一个平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=log2x+ax+b(a>0),若存在实数b,使得对任意的x∈[t,t+2](t>0)都有|f(x)|≤1+a,则t的最小值是(
A.2
B.1
C.
D.

查看答案和解析>>

同步练习册答案